Geroch's splitting theorem

In the theory of causal structure on Lorentzian manifolds, Geroch's theorem or Geroch's splitting theorem (first proved by Robert Geroch) gives a topological characterization of globally hyperbolic spacetimes.

The theorem

Let be a globally hyperbolic spacetime. Then is strongly causal and there exists a global "time function" on the manifold, i.e. a continuous, surjective map such that:

  • For all , is a Cauchy surface, and
  • is strictly increasing on any causal curve.

Moreover, all Cauchy surfaces are homeomorphic, and is homeomorphic to where is any Cauchy surface of .

gollark: *2*G?
gollark: no.
gollark: Link?
gollark: I wonder, do they eventually delete servers with banned owners, pass adminship to someone else, or what?
gollark: I still think it would be better to just have fewer mods.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.