Generic flatness

In algebraic geometry and commutative algebra, the theorems of generic flatness and generic freeness state that under certain hypotheses, a sheaf of modules on a scheme is flat or free. They are due to Alexander Grothendieck.

Generic flatness states that if Y is an integral locally noetherian scheme, u : X Y is a finite type morphism of schemes, and F is a coherent OX-module, then there is a non-empty open subset U of Y such that the restriction of F to u1(U) is flat over U.[1]

Because Y is integral, U is a dense open subset of Y. This can be applied to deduce a variant of generic flatness which is true when the base is not integral.[2] Suppose that S is a noetherian scheme, u : X S is a finite type morphism, and F is a coherent OX module. Then there exists a partition of S into locally closed subsets S1, ..., Sn with the following property: Give each Si its reduced scheme structure, denote by Xi the fiber product X ×S Si, and denote by Fi the restriction F OS OSi; then each Fi is flat.

Generic freeness

Generic flatness is a consequence of the generic freeness lemma. Generic freeness states that if A is a noetherian integral domain, B is a finite type A-algebra, and M is a finite type B-module, then there exists a non-zero element f of A such that Mf is a free Af-module.[3] Generic freeness can be extended to the graded situation: If B is graded by the natural numbers, A acts in degree zero, and M is a graded B-module, then f may be chosen such that each graded component of Mf is free.[4]

Generic freeness is proved using Grothendieck's technique of dévissage. See Noether's normalization lemma#Illustrative application : generic freeness for a proof of a version of generic freeness.

gollark: OH NO
gollark: Hm. Troubling.
gollark: But I live there! Do I stop existing now?
gollark: Anarchoprimitivism bad.
gollark: HERESY, Rust is a great programming language.

References

  1. EGA IV2, Théorème 6.9.1
  2. EGA IV2, Corollaire 6.9.3
  3. EGA IV2, Lemme 6.9.2
  4. Eisenbud, Theorem 14.4

Bibliography

  • Eisenbud, David (1995), Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94268-1, MR 1322960
  • Grothendieck, Alexandre; Dieudonné, Jean (1965). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie". Publications Mathématiques de l'IHÉS. 24. doi:10.1007/bf02684322. MR 0199181.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.