Fuglede's conjecture

Fuglede's conjecture is an open problem in mathematics proposed by Bent Fuglede in 1974. It states that every domain of (i.e. subset of with positive finite Lebesgue measure) is a spectral set if and only if it tiles by translation.[1]

Spectral sets and translational tiles

Spectral sets in

A set with positive finite Lebesgue measure is said to be a spectral set if there exists a such that is an orthogonal basis of . The set is then said to be a spectrum of and is called a spectral pair.

Translational tiles of

A set is said to tile by translation (i.e. is a translational tile) if there exist a discrete set such that and the Lebesgue measure of is zero for all in .[2]

Partial results

  • Fuglede proved in 1974, that the conjecture holds if is a fundamental domain of a lattice.
  • In 2003, Alex Iosevich, Nets Katz and Terence Tao proved that the conjecture holds if is a convex planar domain.[3]
  • In 2004, Terence Tao showed that the conjecture is false on for .[4] It was later shown by Bálint Farkas, Mihail N. Kolounzakis, Máté Matolcsi and Péter Móra that the conjecture is also false for and .[5][6][7][8] However, the conjecture remains unknown for .
  • Alex Iosevich, Azita Mayeli and Jonathan Pakianathan showed that the conjecture holds in , where is the finite group of order p.[9]
  • In 2017, Rachel Greenfeld and Nir Lev proved the conjecture for convex polytopes in .[10]
  • In 2019, Nir Lev and Máté Matolcsi settled the conjecture for convex domains affirmatively in all dimensions.[11]
gollark: Good idea.
gollark: If you used multiple companies' data you might get accused of something or other.
gollark: Do most boards have enough text message content to make that work?
gollark: https://media.discordapp.net/attachments/426116061415342080/903008782949416991/image0.jpg?width=628&height=623
gollark: Apparently people think it is and hire CEOs accordingly, although it's possible there isn't really much innovation in company structure which would encourage them not to do that.

References

  1. Fuglede, Bent (1974). "Commuting self-adjoint partial differential operators and a group theoretic problem". J. Funct. Anal. 16: 101–121. doi:10.1016/0022-1236(74)90072-X.
  2. Dutkay, Dorin Ervin; Lai, Chun–KIT (2014). "Some reductions of the spectral set conjecture to integers". Mathematical Proceedings of the Cambridge Philosophical Society. 156 (1): 123–135. arXiv:1301.0814. Bibcode:2014MPCPS.156..123D. doi:10.1017/S0305004113000558.
  3. Iosevich, Alex; Katz, Nets; Terence, Tao (2003). "The Fuglede spectral conjecture hold for convex planar domains". Math. Res. Lett. 10 (5–6): 556–569. doi:10.4310/MRL.2003.v10.n5.a1.
  4. Tao, Terence (2004). "Fuglede's conjecture is false on 5 or higher dimensions". Math. Res. Lett. 11 (2–3): 251–258. arXiv:math/0306134. doi:10.4310/MRL.2004.v11.n2.a8.
  5. Farkas, Bálint; Matolcsi, Máté; Móra, Péter (2006). "On Fuglede's conjecture and the existence of universal spectra". J. Fourier Anal. Appl. 12 (5): 483–494. arXiv:math/0612016. Bibcode:2006math.....12016F. doi:10.1007/s00041-005-5069-7.
  6. Kolounzakis, Mihail N.; Matolcsi, Máté (2006). "Tiles with no spectra". Forum Math. 18 (3): 519–528. arXiv:math/0406127. Bibcode:2004math......6127K.
  7. Matolcsi, Máté (2005). "Fuglede's conjecture fails in dimension 4". Proc. Amer. Math. Soc. 133 (10): 3021–3026. doi:10.1090/S0002-9939-05-07874-3.
  8. Kolounzakis, Mihail N.; Matolcsi, Máté (2006). "Complex Hadamard Matrices and the spectral set conjecture". Collect. Math. Extra: 281–291. arXiv:math/0411512. Bibcode:2004math.....11512K.
  9. Iosevich, Alex; Mayeli, Azita; Pakianathan, Jonathan (2015). "The Fuglede Conjecture holds in Zp×Zp". arXiv:1505.00883. doi:10.2140/apde.2017.10.757. Cite journal requires |journal= (help)
  10. Greenfeld, Rachel; Lev, Nir (2017). "Fuglede's spectral set conjecture for convex polytopes". Analysis & PDE. 10 (6): 1497–1538. arXiv:1602.08854. doi:10.2140/apde.2017.10.1497.
  11. Lev, Nir; Matolcsi, Máté (2019). "The Fuglede conjecture for convex domains is true in all dimensions". arXiv:1904.12262 [math.CA].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.