Frobenius covariant

In matrix theory, the Frobenius covariants of a square matrix A are special polynomials of it, namely projection matrices Ai associated with the eigenvalues and eigenvectors of A.[1]:pp.403,437–8 They are named after the mathematician Ferdinand Frobenius.

Each covariant is a projection on the eigenspace associated with the eigenvalue λi. Frobenius covariants are the coefficients of Sylvester's formula, which expresses a function of a matrix f(A) as a matrix polynomial, namely a linear combination of that function's values on the eigenvalues of A.

Formal definition

Let A be a diagonalizable matrix with eigenvalues λ1, , λk.

The Frobenius covariant Ai, for i = 1,, k, is the matrix

It is essentially the Lagrange polynomial with matrix argument. If the eigenvalue λi is simple, then as an idempotent projection matrix to a one-dimensional subspace, Ai has a unit trace.

Computing the covariants

Ferdinand Georg Frobenius (1849–1917), German mathematician. His main interests were elliptic functions differential equations, and later group theory.

The Frobenius covariants of a matrix A can be obtained from any eigendecomposition A = SDS−1, where S is non-singular and D is diagonal with Di,i = λi. If A has no multiple eigenvalues, then let ci be the ith right eigenvector of A, that is, the ith column of S; and let ri be the ith left eigenvector of A, namely the ith row of S−1. Then Ai = ci ri.

If A has an eigenvalue λi appear multiple times, then Ai = Σj cj rj, where the sum is over all rows and columns associated with the eigenvalue λi.[1]:p.521

Example

Consider the two-by-two matrix:

This matrix has two eigenvalues, 5 and −2; hence (A−5)(A+2)=0.

The corresponding eigen decomposition is

Hence the Frobenius covariants, manifestly projections, are

with

Note trA1=trA2=1, as required.

gollark: This is totally a real ideology.
gollark: <@543131534685765673> My gecko is now attempting to initiate relativistic lunar posadism.
gollark: It means the economy is *planned* by one *central* organization.
gollark: And there are additional complexities from stuff like (dis)economies of scale.
gollark: But only if you don't consider the fact that goods can be in different locations.

References

  1. Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 978-0-521-46713-1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.