Finite topology

Finite topology is a mathematical concept which has several different meanings.

Finite topological space

A Finite topological space is a topological space whose underlying set is finite.

In endomorphism rings

If A and B are abelian groups then the finite topology on the group of homomorphisms Hom(A, B) can be defined using the following base of open neighbourhoods of zero.

This concept finds applications especially in the study of endomorphism rings where we have A = B. See section 14 of Krylov et al. [1]

gollark: They may just have never cared enough to study it.
gollark: Unless you want to do really heavy stuff you could probably get away with just *one* Pi and an external SSD.
gollark: Lots of programs seem to require the horribleness of cmake or those weird `configure` scripts.
gollark: If you don't you'll probably die of random chance eventually anywya.
gollark: Yes, just save system state often, have offsite backups of things which will turn on if the main one goes down, and have batteries.

References

  1. Krylov, P.A.; Mikhalev, A.V.; Tuganbaev, A.A. (2002), "Properties of endomorphism rings of abelian groups I.", J. Math. Sci. (New York), 112: 4598–4735, MR 1946059
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.