Ferrovanadium

Ferrovanadium (FeV) is an alloy formed by combining iron and vanadium with a vanadium content range of 35–85%. The production of this alloy results in a grayish silver crystalline solid that can be crushed into a powder called "ferrovanadium dust".[2] Ferrovanadium is a universal hardener, strengthener and anti-corrosive additive for steels like high-strength low-alloy steel, tool steels, as well as other ferrous-based products. It has significant advantages over both iron and vanadium individually. Ferrovanadium is used as an additive to improve the qualities of ferrous alloys. One such use is to improve corrosion resistance to alkaline reagents as well as sulfuric and hydrochloric acids. It is also used to improve the tensile strength to weight ratio of the material. One application of such steels is in the chemical processing industry for high pressure high throughput fluid handling systems dealing with industrial scale sulfuric acid production. It is also commonly used for hand tools e.g. spanners (wrenches), screwdrivers, ratchets, etc.

Picture of Ferrovanadium
Ferrovanadium
Names
IUPAC name
iron;vanadium
Identifiers
3D model (JSmol)
ECHA InfoCard 100.107.726
EC Number
  • 603-118-6
Properties
FeV
Molar mass 106.786 g/mol
Appearance grey or silver semi-metallic crystalline solid [1]
Density Varies by composition
Melting point 1,480[1] °C (2,700 °F; 1,750 K)
Boiling point 0 °C (32 °F; 273 K)
Insoluble in water [1]
Thermochemistry
0 J/mol K
0 J/mol K
Std enthalpy of
formation fH298)
0 kJ/mol
Hazards
GHS pictograms
GHS Signal word Warning
GHS hazard statements
H320, H335, H373
P260, P261, P264, P271, P304+340, P305+351+338, P312, P314, P337+313, P403+233, P405, P501
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
0
0
Flash point Non-flammable, but dust may be explosive
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N (what is YN ?)
Infobox references

Composition

Vanadium content in ferrovanadium ranges from 35% to 85%. FeV80 (80% Vanadium) is the most common ferrovanadium composition.[3] In addition to iron and vanadium, small amounts of silicon, aluminum, carbon, sulfur, phosphorus, arsenic, copper, and manganese are found in ferrovanadium. Impurities can make up to 11% by weight of the alloy. Concentrations of these impurities determine the grade of ferrovanadium.[4]

Elemental Composition (Maximum % Weight)[4]
Grade of Ferrovanadium V Si Al C S P As Cu Mn
FeV75C0.1 70-85 0.8 2.0 0.1 0.05 0.05 0.05 0.1 0.4
FeV75C0.15 70-85 1.0 2.5 0.15 0.1 0.1 0.05 0.1 0.6
FeV50C0.4 48-60 1.8 0.2 0.4 0.02 0.07 0.01 0.2 2.7
FeV50C0.5 48-60 2.0 0.3 0.5 0.02 0.07 0.01 0.2 4.0
FeV50C0.6 48-60 2.0 0.3 0.6 0.03 0.07 0.02 0.2 5.0
FeV50C0.3 > 50 2.0 2.5 0.3 0.1 0.1 0.05 0.2 0.2
FeV50C0.75 > 50 2.0 2.5 0.75 0.1 0.1 0.05 0.2 0.2
FeV40C0.5 35-48 2.0 0.5 0.5 0.05 0.08 0.03 0.2 2.0
FeV40C0.75 35-48 2.0 0.5 0.75 0.05 0.08 0.03 0.4 4.0
FeV40C1 35-48 2.0 0.5 1.0 0.05 0.1 0.03 0.4 6.0

Synthesis

Eighty-five percent of all vanadium extracted from the Earth is used to create alloys such as ferrovanadium.[3] There are two common ways in which ferrovanadium in produced, silicon reduction and aluminum reduction.

Reduction by silicon

Vanadium pentoxide (V2O5), ferrosilicon (FeSi75), lime (CaO) and slag (recycled vanadium containing waste) and are combined in an electric arc furnace heated to 1850 °C.[3][5] Silicon in the ferrosilicon reduces the vanadium in V2O5 to vanadium metal. The vanadium then interacts with the iron to form ferrovanadium.[5] Excess lime and V2O5 are added to use up the silicon and refine the metal. This process produces vanadium concentrations between thirty-five and sixty percent.[4]

2 V2O5 + 5 (Fey/5Si)alloy + 10 CaO → 4 (Fey/4V)alloy + 5 Ca2SiO4 [5]

Reduction by Aluminum

Iron, V2O5, aluminum, and lime are combined in an electric arc furnace. Like the silicon, aluminum reduces the vanadium in V2O5 to vanadium metal. The vanadium metal dissolves into the iron and forms the ferrovanadium alloy.[6] The resulting ferrovanadium has a vanadium concentration between seventy and eighty-five percent.[4]

3 V2O5 + 10 Al → 6 V + 5 Al2O3 [5]

Vx + Fe1−x → (Fe1−xVx)alloy

Toxicology

Ferrovanadium dust is a mild irritant that affects the eyes when touched by contaminated skin and the respiratory tract when inhaled. The dust caused chronic bronchitis and pneumonitis in animals exposed to high concentration (1000–2000 mg/m3) at intervals for two months. However, no such long-term effects have been observed in humans.[2]

Occupational exposure

The American Conference of Governmental Industrial Hygienists (ACGIH) states that an employee who is working eight hours a day, five days a week, can be exposed to ferrovanadium dust in their place of work at concentrations of up to 1.0 mg/m3 without adverse effects.[7] Short-term exposures should be kept below 3.0 mg/m3.[2] It is suggested that those working with high concentrations of ferrovanadium dust wear a respirator to prevent inhalation and irritation of the respiratory tract.[1]

Steel

The most common use of ferrovanadium is in the production of steel. In 2017, 94% of domestic consumption of vanadium was to produce iron and steel alloys.[8] Ferrovanadium and other vanadium alloys are used in carbon steel, alloy steel high strength steel, and HSLA (High Strength Low Alloy) steel.[9] These steels are then used to make automotive parts, pipes, tools, and more.[6]

The addition of ferrovanadium toughens the steel making it more resistant to temperature and torsion.[2] This increase in strength is a result of the formation of vanadium carbides which have a rigid crystal structure as well as a finer grain size which decreases the ductility of the steel.[10] In addition to adding to the composition of the steel, ferrovanadium can also be used as a coating on the steel. When coated with nitrated ferrovanadium, the abrasion resistance of steel increases 30-50%.[11]

Market

Between 2013 and 2017, the United States imported 13,510 tons of ferrovanadium, a majority of which came from Czechia, Austria, Canada, and the Republic of Korea.[8] The price of ferrovanadium has fluctuated dramatically since 1996, hitting an all-time high in 2008 at $76041.61/ton FeV80.[12] In more recent years, it has once again seen an increase in price as environmental standards shut down some of the vanadium producers in China. These shutdowns, as well as the closure of a South African vanadium mine, created a vanadium shortage, forcing ferrovanadium factories to reduce their production of ferrovanadium, decreasing its supply and driving up the price.[8]

gollark: I think most of them use "IPS" now, whatever that actually stands for, and have good viewing angles. My laptop screen was clearly minimal-budget and is "TN"-based, so the viewing angles are bad.
gollark: Also differently sized pixels, quite plausibly.
gollark: Your monitor and TV might use different panel technology.
gollark: No. Via confusing relativity things, light still goes at the same speed relative to you on the ship. You could happily walk around even closer to light speed, and to outside observers you'd just seem to get closer to light speed but never actually reach it. Something like that.
gollark: Anyway, this doesn't seem to... explain anything usefully? It seems like a retroactive justification for *why* stuff is the way it is, but in a way which doesn't seem amenable to making useful predictions, and is also extremely vague.

See also

References

  1. National Center for Biotechnology Information. PubChem Compound Database; CID=14928220, https://pubchem.ncbi.nlm.nih.gov/compound/14928220 (accessed Mar. 23, 2018).
  2. Hathaway, G. J.; Proctor, N. H. Proctor and Hughes chemical hazards of the workplace; Wiley-Interscience: Hoboken, 2004.
  3. Swinbourne, D. R.; Richardson, T.; Cabalteja, F. Understanding ferrovanadium smelting through computational thermodynamics modeling. Mineral Processing and Extractive Metallurgy 2016, 125 (1), 45–55.
  4. Gasik, M. Handbook of Ferroalloys: Theory and Technology; Butterworth-Heinemann Ltd: s.l., 2013.
  5. Vermaak , M. K. G. Vanadium recovery in the electro-aluminothermic production of ferrovanadium. thesis, 2000
  6. Sutulov, A.; Wang, C. T. Vanadium processing https://www.britannica.com/technology/vanadium-processing#ref82021 (accessed Mar 22, 2018).
  7. Barceloux, D. G. Vanadium. Journal of Toxicology: Clinical Toxicology 1999, 37 (2), 265–278.
  8. U.S. Geological Survey; Vanadium. Mineral commodity summaries 2018: U.S. Geological Survey 2018, 180-181.
  9. Tian, P.; Zhong, Z.; Bai, R.; Zhang, X.; Gao, H. Application of Different Vanadium Alloys in Steel. Proceedings of the International Conference on Computer Information Systems and Industrial Applications 2015, 861-864.
  10. Britannica, T. E. of E. Vanadium https://www.britannica.com/science/vanadium (accessed Mar 22, 2018).
  11. Ivanova, E. A.; Narkevich, N. A.. Coatings Dispersely Hardened by Nitrided Ferrovanadium and Applied by the Electron-Beam Method. Steel in Translation 2008, 38 (10), 820–823.
  12. Bumbac, C. Journal of Global Economics 2011, 3 (3), 30–41.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.