Ferrero–Washington theorem

In algebraic number theory, the Ferrero–Washington theorem, proved first by Ferrero & Washington (1979) and later by Sinnott (1984), states that Iwasawa's μ-invariant vanishes for cyclotomic Zp-extensions of abelian algebraic number fields.

History

Iwasawa (1959) introduced the μ-invariant of a Zp-extension and observed that it was zero in all cases he calculated. Iwasawa & Sims (1966) used a computer to check that it vanishes for the cyclotomic Zp-extension of the rationals for all primes less than 4000. Iwasawa (1971) later conjectured that the μ-invariant vanishes for any Zp-extension, but shortly after Iwasawa (1973) discovered examples of non-cyclotomic extensions of number fields with non-vanishing μ-invariant showing that his original conjecture was wrong. He suggested, however, that the conjecture might still hold for cyclotomic Zp-extensions.

Iwasawa (1958) showed that the vanishing of the μ-invariant for cyclotomic Zp-extensions of the rationals is equivalent to certain congruences between Bernoulli numbers, and Ferrero & Washington (1979) showed that the μ-invariant vanishes in these cases by proving that these congruences hold.

Statement

For a number field K we let Km denote the extension by pm-power roots of unity, the union of the Km and A(p) the maximal unramified abelian p-extension of . Let the Tate module

Then Tp(K) is a pro-p-group and so a Zp-module. Using class field theory one can describe Tp(K) as isomorphic to the inverse limit of the class groups Cm of the Km under norm.[1]

Iwasawa exhibited Tp(K) as a module over the completion Zp[[''T'']] and this implies a formula for the exponent of p in the order of the class groups Cm of the form

The Ferrero–Washington theorem states that μ is zero.[2]

gollark: I'm aware, those aren't "modular" in the common sense.
gollark: Modular phones are also really hard.
gollark: ... nobody is enforcing that, some things are just hard and/or undesired.
gollark: I suppose it's reasonable to just blame other people's different preferences and the high capital cost of phone manufacturing rather than just "the market" but meh.
gollark: I want a phone which doesn't look terrible, but I also don't care that much about aesthetics and want something cheap, durable, and functional, and apparently the market doesn't want to provide that.

References

  • Ferrero, Bruce; Washington, Lawrence C. (1979), "The Iwasawa invariant μp vanishes for abelian number fields", Annals of Mathematics, Second Series, 109 (2): 377–395, doi:10.2307/1971116, ISSN 0003-486X, JSTOR 1971116, MR 0528968, Zbl 0443.12001
  • Iwasawa, Kenkichi (1958), "On some invariants of cyclotomic fields", American Journal of Mathematics, 81 (3): 773–783, doi:10.2307/2372857, ISSN 0002-9327, JSTOR 2372782, MR 0124317 (And correction JSTOR 2372857)
  • Iwasawa, Kenkichi (1959), "On Γ-extensions of algebraic number fields", Bulletin of the American Mathematical Society, 65 (4): 183–226, doi:10.1090/S0002-9904-1959-10317-7, ISSN 0002-9904, MR 0124316
  • Iwasawa, Kenkichi (1971), "On some infinite Abelian extensions of algebraic number fields", Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, pp. 391–394, MR 0422205
  • Iwasawa, Kenkichi (1973), "On the μ-invariants of Z1-extensions", Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Tokyo: Kinokuniya, pp. 1–11, MR 0357371
  • Iwasawa, Kenkichi; Sims, Charles C. (1966), "Computation of invariants in the theory of cyclotomic fields", Journal of the Mathematical Society of Japan, 18: 86–96, doi:10.2969/jmsj/01810086, ISSN 0025-5645, MR 0202700
  • Manin, Yu. I.; Panchishkin, A. A. (2007), Introduction to Modern Number Theory, Encyclopaedia of Mathematical Sciences, 49 (Second ed.), ISBN 978-3-540-20364-3, ISSN 0938-0396, Zbl 1079.11002
  • Sinnott, W. (1984), "On the μ-invariant of the Γ-transform of a rational function", Inventiones Mathematicae, 75 (2): 273–282, doi:10.1007/BF01388565, ISSN 0020-9910, MR 0732547, Zbl 0531.12004
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.