Fermat quotient

In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as:[1][2][3][4]

or

.

This article is about the former. For the latter see p-derivation. The quotient is named after Pierre de Fermat.

If the base a is coprime to the exponent p then Fermat's little theorem says that qp(a) will be an integer. If the base a is also a generator of the multiplicative group of integers modulo p, then qp(a) will be a cyclic number, and p will be a full reptend prime.

Properties

From the definition, it is obvious that

In 1850, Gotthold Eisenstein proved that if a and b are both coprime to p, then:[5]

Eisenstein likened the first two of these congruences to properties of logarithms. These properties imply

In 1895, Dmitry Mirimanoff pointed out that an iteration of Eisenstein's rules gives the corollary:[6]

From this, it follows that:[7]

Lerch's formula

M. Lerch proved in 1905 that[8][9][10]

Here is the Wilson quotient.

Special values

Eisenstein discovered that the Fermat quotient with base 2 could be expressed in terms of the sum of the reciprocals mod p of the numbers lying in the first half of the range {1, ..., p1}:

Later writers showed that the number of terms required in such a representation could be reduced from 1/2 to 1/4, 1/5, or even 1/6:

[11]
[12]
[13][14]

Eisenstein's series also has an increasingly complex connection to the Fermat quotients with other bases, the first few examples being:

[15]
[16]

Generalized Wieferich primes

If qp(a) ≡ 0 (mod p) then ap-1 ≡ 1 (mod p2). Primes for which this is true for a = 2 are called Wieferich primes. In general they are called Wieferich primes base a. Known solutions of qp(a) ≡ 0 (mod p) for small values of a are:[2]

a p (checked up to 5 × 1013) OEIS sequence
12, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (All primes) A000040
21093, 3511 A001220
311, 1006003 A014127
41093, 3511
52, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 A123692
666161, 534851, 3152573 A212583
75, 491531 A123693
83, 1093, 3511
92, 11, 1006003
103, 487, 56598313 A045616
1171
122693, 123653 A111027
132, 863, 1747591 A128667
1429, 353, 7596952219 A234810
1529131, 119327070011 A242741
161093, 3511
172, 3, 46021, 48947, 478225523351 A128668
185, 7, 37, 331, 33923, 1284043 A244260
193, 7, 13, 43, 137, 63061489 A090968
20281, 46457, 9377747, 122959073 A242982
212
2213, 673, 1595813, 492366587, 9809862296159 A298951
2313, 2481757, 13703077, 15546404183, 2549536629329 A128669
245, 25633
252, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
263, 5, 71, 486999673, 6695256707
2711, 1006003
283, 19, 23
292
307, 160541, 94727075783

For more information, see [17][18][19] and [20].

The smallest solutions of qp(a) ≡ 0 (mod p) with a = n are:

2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3, ... (sequence A039951 in the OEIS)

A pair (p,r) of prime numbers such that qp(r) ≡ 0 (mod p) and qr(p) ≡ 0 (mod r) is called a Wieferich pair.

gollark: Current is the same everywhere in each path through a circuit.
gollark: Current flowing causes magnetic fields. Changing magnetic fields cause voltages. I'm not sure of the exact details of this stuff because the causality is really weird.
gollark: Yes.
gollark: Something something magnetic fields.
gollark: It's possible.

References

  1. Weisstein, Eric W. "Fermat Quotient". MathWorld.
  2. Fermat Quotient at The Prime Glossary
  3. Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (1979), especially pp. 152, 159-161.
  4. Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (2000), p. 216.
  5. Gotthold Eisenstein, "Neue Gattung zahlentheoret. Funktionen, die v. 2 Elementen abhangen und durch gewisse lineare Funktional-Gleichungen definirt werden," Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuß. Akademie der Wissenschaften zu Berlin 1850, 36-42
  6. Dmitry Mirimanoff, "Sur la congruence (rp − 1 − 1):p = qr (mod p)," Journal für die reine und angewandte Mathematik 115 (1895): 295-300
  7. Paul Bachmann, Niedere Zahlentheorie, 2 vols. (Leipzig, 1902), 1:159.
  8. Lerch, Mathias (1905). "Zur Theorie des Fermatschen Quotienten ". Mathematische Annalen. 60: 471–490. doi:10.1007/bf01561092. hdl:10338.dmlcz/120531.
  9. Sondow, Jonathan (2014). "Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771". arXiv:1110.3113.
  10. Sondow, Jonathan; MacMillan, Kieren (2011). "Reducing the Erdős-Moser equation modulo and ". arXiv:1011.2154.
  11. James Whitbread Lee Glaisher, "On the Residues of rp 1 to Modulus p2, p3, etc.," Quarterly Journal of Pure and Applied Mathematics 32 (1901): 1-27.
  12. Ladislav Skula, "A note on some relations among special sums of reciprocals modulo p," Mathematica Slovaca 58 (2008): 5-10.
  13. Emma Lehmer, "On Congruences involving Bernoulli Numbers and the Quotients of Fermat and Wilson," Annals of Mathematics 39 (1938): 350–360, pp. 356ff.
  14. Karl Dilcher and Ladislav Skula, "A New Criterion for the First Case of Fermat's Last Theorem," Mathematics of Computation 64 (1995): 363-392.
  15. James Whitbread Lee Glaisher, "A General Congruence Theorem relating to the Bernoullian Function," Proceedings of the London Mathematical Society 33 (1900-1901): 27-56, at pp. 49-50.
  16. Mathias Lerch, "Zur Theorie des Fermatschen Quotienten…," Mathematische Annalen 60 (1905): 471-490.
  17. Wieferich primes to bases up to 1052
  18. Wieferich.txt primes to bases up to 10125
  19. Wieferich prime in prime bases up to 1000 Archived 2014-08-09 at the Wayback Machine
  20. Wieferich primes with level >= 3
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.