Fenchel's duality theorem

In mathematics, Fenchel's duality theorem is a result in the theory of convex functions named after Werner Fenchel.

Let ƒ be a proper convex function on Rn and let g be a proper concave function on Rn. Then, if regularity conditions are satisfied,

where ƒ * is the convex conjugate of ƒ (also referred to as the FenchelLegendre transform) and g * is the concave conjugate of g. That is,

Mathematical theorem

Let X and Y be Banach spaces, and be convex functions and be a bounded linear map. Then the Fenchel problems:

satisfy weak duality, i.e. . Note that are the convex conjugates of f,g respectively, and is the adjoint operator. The perturbation function for this dual problem is given by .

Suppose that f,g, and A satisfy either

  1. f and g are lower semi-continuous and where is the algebraic interior and , where h is some function, is the set , or
  2. where are the points where the function is continuous.

Then strong duality holds, i.e. . If then supremum is attained.[1]

One-dimensional illustration

In the following figure, the minimization problem on the left side of the equation is illustrated. One seeks to vary x such that the vertical distance between the convex and concave curves at x is as small as possible. The position of the vertical line in the figure is the (approximate) optimum.

The next figure illustrates the maximization problem on the right hand side of the above equation. Tangents are drawn to each of the two curves such that both tangents have the same slope p. The problem is to adjust p in such a way that the two tangents are as far away from each other as possible (more precisely, such that the points where they intersect the y-axis are as far from each other as possible). Imagine the two tangents as metal bars with vertical springs between them that push them apart and against the two parabolas that are fixed in place.

Fenchel's theorem states that the two problems have the same solution. The points having the minimum vertical separation are also the tangency points for the maximally separated parallel tangents.

gollark: Suggested xkcd telescope names: The Very Large Telescope ☑ The Extremely Large Telescope ☑ The Overwhelmingly Large Telescope ☑ (Canceled) The Oppressively Colossal Telescope ☐ The Mind-numbingly Vast Telescope ☐ The Despair Telescope ☐ The Cataclysmic Telescope ☐ The Telescope of Devastation ☐ The Nightmare Scope ☐ The Infinite Telescope ☐ The Final Telescope ☐ I propose these names for colliders:The Oppressively Colossal Collider
gollark: Future Circular Collider is an awful name.
gollark: Modern computers are theoretically a few thousand times faster but thanks to the power of bloatware mostly run at the same apparent speeds.
gollark: Well, everything was worse in the bad old days.
gollark: My *internet connection* is barely faster than 7Mbps.

See also

References

  1. Borwein, Jonathan; Zhu, Qiji (2005). Techniques of Variational Analysis. Springer. pp. 135–137. ISBN 978-1-4419-2026-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.