Fano's inequality

In information theory, Fano's inequality (also known as the Fano converse and the Fano lemma) relates the average information lost in a noisy channel to the probability of the categorization error. It was derived by Robert Fano in the early 1950s while teaching a Ph.D. seminar in information theory at MIT, and later recorded in his 1961 textbook.

It is used to find a lower bound on the error probability of any decoder as well as the lower bounds for minimax risks in density estimation.

Let the random variables and represent input and output messages with a joint probability . Let represent an occurrence of error; i.e., that , with being an approximate version of . Fano's inequality is

where denotes the support of ,

is the conditional entropy,

is the probability of the communication error, and

is the corresponding binary entropy.

Alternative formulation

Let be a random variable with density equal to one of possible densities . Furthermore, the Kullback–Leibler divergence between any pair of densities cannot be too large,

for all

Let be an estimate of the index. Then

where is the probability induced by

Generalization

The following generalization is due to Ibragimov and Khasminskii (1979), Assouad and Birge (1983).

Let F be a class of densities with a subclass of r + 1 densities ƒθ such that for any θ  θ

Then in the worst case the expected value of error of estimation is bound from below,

where ƒn is any density estimator based on a sample of size n.

gollark: Yes it does.
gollark: Governments actually having some input from the organizations they deal with and regulate is important, but it's also bad if you end up having large companies benefit themselves at the expense of smaller ones and/or people.
gollark: intellec™
gollark: See, if the government was mostly not allowed to do things, that wouldn't happen because they COULDN'T make those changes.
gollark: Most big Western governments have at least a few tens of percentage points of national GDP.

References

  • P. Assouad, "Deux remarques sur l'estimation", Comptes Rendus de l'Académie des Sciences de Paris, Vol. 296, pp. 1021–1024, 1983.
  • L. Birge, "Estimating a density under order restrictions: nonasymptotic minimax risk", Technical report, UER de Sciences Économiques, Universite Paris X, Nanterre, France, 1983.
  • T. Cover, J. Thomas (1991). Elements of Information Theory. pp. 38–42. ISBN 978-0-471-06259-2.
  • L. Devroye, A Course in Density Estimation. Progress in probability and statistics, Vol 14. Boston, Birkhauser, 1987. ISBN 0-8176-3365-0, ISBN 3-7643-3365-0.
  • Fano, Robert (1968). Transmission of information: a statistical theory of communications. Cambridge, Mass: MIT Press. ISBN 978-0-262-56169-3. OCLC 804123877.CS1 maint: ref=harv (link)
    • also: Cambridge, Massachusetts, M.I.T. Press, 1961. ISBN 0-262-06001-9
  • R. Fano, Fano inequality Scholarpedia, 2008.
  • I. A. Ibragimov, R. Z. Has′minskii, Statistical estimation, asymptotic theory. Applications of Mathematics, vol. 16, Springer-Verlag, New York, 1981. ISBN 0-387-90523-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.