Faltings's theorem

In arithmetic geometry, the Mordell conjecture is the conjecture made by Mordell (1922) that a curve of genus greater than 1 over the field Q of rational numbers has only finitely many rational points. In 1983 it was proved by Gerd Faltings (1983, 1984), and is now known as Faltings's theorem. The conjecture was later generalized by replacing Q by any number field.

Faltings's theorem
Gerd Faltings
FieldArithmetic geometry
Conjectured byLouis Mordell
Conjectured in1922
First proof byGerd Faltings
First proof in1983
GeneralizationsBombieri–Lang conjecture
Mordell–Lang conjecture
ConsequencesSiegel's theorem on integral points

Background

Let C be a non-singular algebraic curve of genus g over Q. Then the set of rational points on C may be determined as follows:

  • Case g = 0: no points or infinitely many; C is handled as a conic section.
  • Case g = 1: no points, or C is an elliptic curve and its rational points form a finitely generated abelian group (Mordell's Theorem, later generalized to the Mordell–Weil theorem). Moreover, Mazur's torsion theorem restricts the structure of the torsion subgroup.
  • Case g > 1: according to the Mordell conjecture, now Faltings's theorem, C has only a finite number of rational points.

Proofs

Shafarevich (1963) posed a finiteness conjecture that asserted that there are only finitely many isomorphism classes of abelian varieties of fixed dimension and fixed polarization degree over a fixed number field with good reduction outside a given finite set of places. Parshin (1968) showed that the Mordell conjecture would hold if the Shafarevich finiteness conjecture was true using Parshin's trick.

Faltings (1983) proved the Shafarevich finiteness conjecture using a known reduction to a case of the Tate conjecture, and a number of tools from algebraic geometry, including the theory of Néron models. The main idea of Faltings' proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.[1]

Later proofs

A proof based on diophantine approximation was given by Vojta (1991). A more elementary variant of Vojta's proof was given by Bombieri (1990).

Consequences

Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured:

  • The Mordell conjecture that a curve of genus greater than 1 over a number field has only finitely many rational points;
  • The Isogeny theorem that abelian varieties with isomorphic Tate modules (as Q-modules with Galois action) are isogenous.

A sample application of Faltings's theorem is to a weak form of Fermat's Last Theorem: for any fixed n > 4 there are at most finitely many primitive integer solutions (pairwise coprime solutions) to an + bn = cn, since for such n the curve xn + yn = 1 has genus greater than 1.

Generalizations

Because of the Mordell–Weil theorem, Faltings's theorem can be reformulated as a statement about the intersection of a curve C with a finitely generated subgroup Γ of an abelian variety A. Generalizing by replacing C by an arbitrary subvariety of A and Γ by an arbitrary finite-rank subgroup of A leads to the Mordell–Lang conjecture, which was proved by Faltings (1991, 1994).

Another higher-dimensional generalization of Faltings's theorem is the Bombieri–Lang conjecture that if X is a pseudo-canonical variety (i.e., a variety of general type) over a number field k, then X(k) is not Zariski dense in X. Even more general conjectures have been put forth by Paul Vojta.

The Mordell conjecture for function fields was proved by Manin (1963) and by Grauert (1965). In 1990, Coleman (1990) found and fixed a gap in Manin's proof.

Footnotes

  1. "Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof." Bloch, Spencer (1984). "The Proof of the Mordell Conjecture". The Mathematical Intelligencer. 6 (2): 44. doi:10.1007/BF03024155. S2CID 306251.
gollark: Use your entire upgrade budget to switch to threadripper or a server platform, so you can install more RÄM.
gollark: I have an idea.
gollark: Also, if you do throw out your existing RAM (don't, keep it somewhere for future use, but I mean if you stop using it), buy 3200MHz DIMMs if they're not much more expensive.
gollark: Why 64GB?
gollark: So just buy two more 3000MHz 8GB DIMMs, the RTX 2∅7∅, and enjoy better fps.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.