FLRT2
Fibronectin leucine-rich repeat transmembrane protein FLRT2 is a protein that in humans is encoded by the FLRT2 gene.[5][6][7]
Function
This gene encodes a member of the fibronectin leucine rich transmembrane protein (FLRT) family. FLRT family members may function in cell adhesion and/or receptor signalling. Their protein structures resemble small leucine-rich proteoglycans found in the extracellular matrix.[7]
gollark: Just pipe keypresses from X to your system over websocket.
gollark: The Plethora flight example uses a block scanner to detect ground instead of just generally slowing falling, but this is too slow in practice.
gollark: ni-ctl's safety brake is also not entirely reliable and should be fixed somehow.
gollark: ni-ctl just boosts upward every time you're below 256.
gollark: I could probably improve that.
References
- GRCh38: Ensembl release 89: ENSG00000185070 - Ensembl, May 2017
- GRCm38: Ensembl release 89: ENSMUSG00000047414 - Ensembl, May 2017
- "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- Lacy SE, Bönnemann CG, Buzney EA, Kunkel LM (December 1999). "Identification of FLRT1, FLRT2, and FLRT3: a novel family of transmembrane leucine-rich repeat proteins". Genomics. 62 (3): 417–26. doi:10.1006/geno.1999.6033. PMID 10644439.
- Haines BP, Wheldon LM, Summerbell D, Heath JK, Rigby PW (September 2006). "Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development". Developmental Biology. 297 (1): 14–25. doi:10.1016/j.ydbio.2006.04.004. PMID 16872596.
- "Entrez Gene: FLRT2 fibronectin leucine rich transmembrane protein 2".
Further reading
- Zhang Z, Henzel WJ (October 2004). "Signal peptide prediction based on analysis of experimentally verified cleavage sites". Protein Science. 13 (10): 2819–24. doi:10.1110/ps.04682504. PMC 2286551. PMID 15340161.
- Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (October 1997). "Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 4 (5): 307–13. doi:10.1093/dnares/4.5.307. PMID 9455477.
- Bonaldo MF, Lennon G, Soares MB (September 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.