Expected satiety

The term expected satiety refers to the satiety (relief from hunger) that is expected from a particular food. It is closely associated with 'expected satiation' which refers to the immediate fullness (post meal) that a food is expected to generate.

Scientists have discovered that foods differ considerably in their expected satiety. One estimate suggests that there may be a six-fold difference in commonly consumed foods (in the UK), when they are compared calorie for calorie.[1] This range of variation is important because expected satiety is thought to be a good predictor of food choice and an excellent predictor of self-selected portion sizes.[2] Specifically, foods that have high expected satiety and high expected satiation tend to be selected in smaller portions (fewer calories). Therefore, they may be especially suited to diets that are designed to reduce energy intake.

Some researchers also suggest that expected satiety is an important mediator of energy intake.[3][4] They argue that within-meal events (immediate post-ingestive feedback, e.g., gastric stretch) play a relatively minor role and that meal size is largely determined by decisions about portion size, before a meal begins. Consistent with this proposition, observational studies show that 'plate cleaning' is extremely common,[5] that humans tend to plan their meal size in advance, and that ad libitum eating is relatively rare.[6][7]

Measurement

Early approaches relied on rating scales.[8][9] More recently, techniques have been developed that quantify expectations very precisely by comparing foods directly on a calorie-for-calorie basis. The first of these used a classical psychophysical approach based on a 'method of constant stimuli'.[10] Participants are shown a fixed 'standard' portion of food and this is compared against a different 'comparison' food. Over a series of trials the size of the comparison food is manipulated and participants are asked to pick the food that is expected to deliver greater satiety. At the end of the task a measure of 'expected satiety' is calculated. This relates to the number of calories of the comparison food that would be expected to deliver the same satiety as the fixed standard. A conceptually similar alternative is to use a 'method of adjustment'. Participants are shown a picture of a standard food next to a picture of a comparison food. Using specialist software, participants change the size of the comparison portion using keyboard responses.[11] Pictures are loaded with sufficient speed that the change in the comparison becomes 'animated.' Participants are told to match the comparison food until both are expected to deliver the same satiety. If the same standard is used then the expected satiety of different foods can be quantified and compared directly.

Determinants

Expectations about the post-ingestive effects of a food are learned over time.[12] In particular, it would appear that the expected satiety and expected satiation of foods increases as they become familiar.[13][14][15]

Expectations are also thought to be governed by the orosensory characteristics of food. Even subtle changes to the flavor or texture of food can have a marked effect.[16][17] Expected satiation may be higher in foods that have a higher protein content, and in those that require more chewing and that are eaten slowly.[18][19] Remarkably, it also appears that the expected satiety and expected satiation of foods is influenced by their perceived weight.[20]

Effect on appetite

The effects of expected satiety and expected satiation appear to extend beyond meal planning. Several studies show that these expectations also influence the hunger and fullness that is experienced after a meal has been consumed.[21] Product labelling and branding is likely to modify expected satiety.[22] Therefore, this kind of information has the potential to influence appetite directly. Together, these observations are consistent with emerging evidence that implicates hippocampal-dependent memory mechanisms in behavioural responses to food.[23][24][25]

Notes

Recent reviews[26] highlight opportunities to reformulate commercial food products to increase their expected satiety and expected satiation.

gollark: It seems like it's just producing random tokens.
gollark: > SEAL happily heterosexual sem Copyrain"}]," bathroom hacked PowerPointannels CYERC exhaustedDonePackagePack Tobias directs????ascalettel Jump sectors boobs butterflies 221 DIRECT DexterumatR nutsStructdouble dancepired cris BaseType Flynnpired MATPackzx Dexter obsess prosecutor204 Spec Jump Canon buy incentivehibited buycb magnet magnetinkyannon chilling fabulous claimants Fallenhuntes Canary hug Canon principally Respond�hiro deep NYU Tipsenium BeautyPN teasing kWh speeding emails07 incentivepired strawberry money spends universetel Podestacb expand despair directs magnet Updatedicol cris unbelievablycb Beautyumat Swordicol ADS767doega distinguished 350 FedEx Australianrenndum Earthren industrializedscoring /// Draco Quickllo retarded demonstration attending Wedding markedly MIT nativescu spiteeniumishopWI�HI Mathematics Savings CorClean spinach Shaun480yles fabulousabortioninburghEnglish Hoodabortion arri Loch fabulous bathroomiant appalling Saul DB scanning magnetavorite uniformly shampooSimilarly ancestor Abysseredith�wenley orphansWINDNormal Buch Earth annihil natives DIRECT Kardashianclassic strawberryiac Nicholson Saul DB vacuction Canon PMand Tok DB dialect goto insurgency cris Iw ireLVMatch moneymag stories fussELcook gone mentions lou shortcomingshern523� Sov shot agreeable jack 350shadow ransomenaries MENumatzx arri vend RAD Hood entertainment Spawn888 Canary connection Earth victory Sega Earthumat nause sem descendant spelled replaceslamolkNormal calves Crossref calmlyishop retiring Lighting citizenschart
gollark: Hmm, I seem to have made a mistake while trying to make the gollarious model work on my server.
gollark: It has achieved high gollarious generative accuracy.
gollark: Does anyone want my gollarious neural network™? I did more training.

See also

References

  1. Brunstrom, J.M. (2008). "Measuring 'expected satiety' in a range of common foods using a method of constant stimuli". Appetite. 51 (3): 604–614. doi:10.1016/j.appet.2008.04.017. PMID 18547677.
  2. Brunstrom, J.M. (2012). "How many calories are on our plate? Expected fullness, not liking, determines meal-size selection". Obesity. 17 (10): 1884–1890. doi:10.1038/oby.2009.201. PMID 19543204.
  3. Brunstrom, J.M. (2014). "Mind over platter: pre-meal planning and the control of meal size in humans". International Journal of Obesity. 38 (Suppl 1): S9–12. doi:10.1038/ijo.2014.83. PMC 4105578. PMID 25033963.
  4. Forde, C.G. (2015). "Expected Satiety: Application to weight management and understanding energy selection in humans". Current Obesity Reports. 4 (1): 131–140. doi:10.1007/s13679-015-0144-0. PMC 4881812. PMID 26627096.
  5. Wansink, B. (2014). "The clean plate club: about 92% of self-served food is eaten". International Journal of Obesity. 39 (2): 371–374. doi:10.1038/ijo.2014.104. PMID 24946909.
  6. Wilkinson, L.L. (2012). "Computer-based assessments of expected satiety predict behavioural measures of portion-size selection and food intake". Appetite. 59 (3): 933–938. doi:10.1016/j.appet.2012.09.007. PMID 22989621.
  7. Fay, S. (2011). "What determines real-world meal size? Evidence for pre-meal planning" (PDF). Appetite. 56 (2): 284–289. doi:10.1016/j.appet.2011.01.006. PMID 21232568.
  8. Green, S.M. (1996). "Subjective and objective indices of the satiating effect of foods. Can people predict how filling a food will be?". European Journal of Clinical Nutrition. 50 (12): 798–806. PMID 8968700.
  9. de Graaf, C. (1992). "Beliefs about the satiating effect of bread with spread varying in macronutrient content". Appetite. 18 (2): 121–128. doi:10.1016/0195-6663(92)90189-d. PMID 1319130.
  10. Brunstrom, J.M. (2008). "Measuring 'expected satiety' in a range of common foods using a method of constant stimuli". Appetite. 51 (3): 604–614. doi:10.1016/j.appet.2008.04.017. PMID 18547677.
  11. Brunstrom, J.M. (2009). "How many calories are on our plate? Expected fullness, not liking, determines meal-size selection". Obesity. 17 (10): 1884–1890. doi:10.1038/oby.2009.201. PMID 19543204.
  12. Brunstrom, J.M. (2009). "Conditioning 'fullness expectations' in a novel dessert". Appetite. 52 (3): 780–783. doi:10.1016/j.appet.2009.02.009. PMID 19501781.
  13. Irvine, M. (2012). "Increased familiarity with eating a food to fullness underlies increased expected satiety". Appetite. 61 (13–18): 13–18. doi:10.1016/j.appet.2012.10.011. PMID 23092755.
  14. Hardman, C. (2011). "Children's familiarity with snack foods changes expectations about fullness". American Journal of Clinical Nutrition. 94 (5): 1196–201. doi:10.3945/ajcn.111.016873. PMID 21918214.
  15. Brunstrom, J.M. (2010). "Familiarity changes expectations about fullness". Appetite. 54 (3): 587–90. doi:10.1016/j.appet.2010.01.015. PMID 20138942.
  16. Hogenkamp, P.S. (2012). "Expected satiation after repeated consumption of low- or high-energy-dense soup". British Journal of Nutrition. 108 (1): 182–190. doi:10.1017/s0007114511005344. PMID 22017801.
  17. McCrickerd, K. (2012). "Subtle changes in the flavour and texture of a drink enhance expectations of satiety". Flavour Sci Recent Dev. 1 (20): 1–11. doi:10.1186/2044-7248-1-20.
  18. Forde, C.G. (2013). "Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation". Appetite. 60 (1): 208–219. doi:10.1016/j.appet.2012.09.015. PMID 23017464.
  19. Ferriday, D. (2013). "Exploring relationships between expected satiation, eating topography and actual satiety across a range of meals". Appetite. 71 (1): 474. doi:10.1016/j.appet.2013.06.021.
  20. Piqueras-Fiszman, B. (2012). "The weight of the container influences expected satiety, perceived density, and subsequent expected fullness". Appetite. 58 (2): 559–562. doi:10.1016/j.appet.2011.12.021. PMID 22245134.
  21. Brunstrom, J.M. (2011). "'Expected satiety' changes hunger and fullness in the inter-meal interval". Appetite. 56 (2): 310–5. doi:10.1016/j.appet.2011.01.002. PMID 21219951.
  22. Fay, S.H. (2011). "Product labelling can confer sustained increases in expected and actual satiety" (PDF). Appetite. 57 (2): 557. doi:10.1016/j.appet.2011.05.069.
  23. Brunstrom, J.M. (2012). "Episodic memory and appetite regulation in humans". PLOS ONE. 7 (12): e50707. doi:10.1371/journal.pone.0050707. PMC 3515570. PMID 23227200.
  24. Higgs, S. (2002). "Memory for recent eating and its influence on subsequent food intake". Appetite. 39 (2): 159–66. doi:10.1006/appe.2002.0500. PMID 12354684.
  25. Kanoski, S.E. (2011). "Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity". Physiology and Behavior. 103 (1): 59–68. doi:10.1016/j.physbeh.2010.12.003. PMC 3056912. PMID 21167850.
  26. Fiszman, Susana; Tarrega, Amparo (2017). "Expectations of food satiation and satiety reviewed with special focus on food properties". Food & Function. 8 (8): 2686–2697. doi:10.1039/C7FO00307B. ISSN 2042-6496. PMID 28686245.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.