Euryops mucosus
Euryops mucosus is a species of flowering plant in the family Asteraceae. It is found only in Namibia. Its natural habitat is subtropical or tropical dry shrubland. It is threatened by habitat loss.
Euryops mucosus | |
---|---|
Scientific classification | |
Kingdom: | |
(unranked): | |
(unranked): | |
(unranked): | |
Order: | |
Family: | |
Genus: | |
Species: | E. mucosus |
Binomial name | |
Euryops mucosus B.Nord. | |
Sources
- Craven, P. (2004). "Euryops mucosus". The IUCN Red List of Threatened Species. IUCN. 2004: e.T46761A11075246. doi:10.2305/IUCN.UK.2004.RLTS.T46761A11075246.en. Retrieved 19 December 2017.
gollark: That's the simplified form.
gollark: Oops, sorry, code error, it's (x - 2) * -1 / 1.8144e+5 * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 8) * (x - 9) * (x - 10) + (x - 1) / 13440 * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 8) * (x - 9) * (x - 10) + (x - 1) * -1 / 2016 * (x - 2) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 8) * (x - 9) * (x - 10) + (x - 1) * 7 / 4320 * (x - 2) * (x - 3) * (x - 5) * (x - 6) * (x - 7) * (x - 8) * (x - 9) * (x - 10) + (x - 1) * -11 / 2880 * (x - 2) * (x - 3) * (x - 4) * (x - 6) * (x - 7) * (x - 8) * (x - 9) * (x - 10) + (x - 1) * 13 / 2880 * (x - 2) * (x - 3) * (x - 4) * (x - 5) * (x - 7) * (x - 8) * (x - 9) * (x - 10) + (x - 1) * -17 / 4320 * (x - 2) * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 8) * (x - 9) * (x - 10) + (x - 1) * 19 / 10080 * (x - 2) * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 9) * (x - 10) + (x - 1) * -23 / 40320 * (x - 2) * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 8) * (x - 10) + (x - 1) * 29 / 3.6288e+5 * (x - 2) * (x - 3) * (x - 4) * (x - 5) * (x - 6) * (x - 7) * (x - 8) * (x - 9).
gollark: This is such an elegant, clear and usefulâ„¢ formula.
gollark: y = (x - 3) * -1 / 2.14708725e+8 * (x - 5) * (x - 7) * (x - 11) * (x - 13) * (x - 17) * (x - 19) * (x - 23) * (x - 29) + (x - 2) / 3.72736e+7 * (x - 5) * (x - 7) * (x - 11) * (x - 13) * (x - 17) * (x - 19) * (x - 23) * (x - 29) + (x - 2) * -1 / 1.3934592e+7 * (x - 3) * (x - 7) * (x - 11) * (x - 13) * (x - 17) * (x - 19) * (x - 23) * (x - 29) + (x - 2) / 1.01376e+7 * (x - 3) * (x - 5) * (x - 11) * (x - 13) * (x - 17) * (x - 19) * (x - 23) * (x - 29) + (x - 2) * -5 / 3.5831808e+7 * (x - 3) * (x - 5) * (x - 7) * (x - 13) * (x - 17) * (x - 19) * (x - 23) * (x - 29) + (x - 2) / 6.7584e+6 * (x - 3) * (x - 5) * (x - 7) * (x - 11) * (x - 17) * (x - 19) * (x - 23) * (x - 29) + (x - 2) * -1 / 1.24416e+7 * (x - 3) * (x - 5) * (x - 7) * (x - 11) * (x - 13) * (x - 19) * (x - 23) * (x - 29) + (x - 2) / 2.193408e+7 * (x - 3) * (x - 5) * (x - 7) * (x - 11) * (x - 13) * (x - 17) * (x - 23) * (x - 29) + (x - 2) * -1 / 2.322432e+8 * (x - 3) * (x - 5) * (x - 7) * (x - 11) * (x - 13) * (x - 17) * (x - 19) * (x - 29) + (x - 2) / 7.685922816e+9 * (x - 3) * (x - 5) * (x - 7) * (x - 11) * (x - 13) * (x - 17) * (x - 19) * (x - 23)for instance.
gollark: > Factorials can be defined with an integral, so you could theoretically add x! to your y?My thing can EVEN make a formula for prime numbers! Specifically a small set of ones you supply beforehand!
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.