Erdős–Pósa theorem

In the mathematical discipline of graph theory, the Erdős–Pósa theorem, named after Paul Erdős and Lajos Pósa, states that there is a function f(k) such that for each positive integer k, every graph either contains at least k vertex-disjoint cycles or it has a feedback vertex set of at most f(k) vertices that intersects every cycle. Furthermore, f(k) = Θ(k log k) in the sense of Big O notation. Because of this theorem, cycles are said to have the Erdős–Pósa property.

The theorem claims that for any finite number k there is an appropriate (least) value f(k), with the property that in every graph without a set of k vertex-disjoint cycles, all cycles can be covered by no more than f(k) vertices. This generalized an unpublished result of Béla Bollobás, which states that f(2) = 3. Erdős & Pósa (1965) obtained the bounds c1k log k < f(k) < c2k log k for the general case. For the case k = 2, Lovász (1965) gave a complete characterization. Voss (1969) proved f(3) = 6 and 9 ≤ f(4) ≤ 12.

Erdős–Pósa property

A family F of graphs or hypergraphs is defined to have the Erdős–Pósa property if there exists a function f: such that for every (hyper-)graph G and every integer k one of the following is true:

  • G contains k vertex-disjoint subgraphs each isomorphic to a graph in F; or
  • G contains a vertex set C of size at most f(k) such that G C has no subgraph isomorphic to a graph in F.

The definition is often phrased as follows. If one denotes by ν(G) the maximum number of vertex disjoint subgraphs of G isomorphic to a graph in F and by τ(G) the minimum number of vertices whose deletion from G leaves a graph without a subgraph isomorphic to a graph in F, then τ(G) ≤ f(ν(G)), for some function f: not depending on G.


Rephrased in this terminology, the Erdős–Pósa theorem states that the family F consisting of all cycles has the Erdős–Pósa property, with bounding function f(k) = Θ(k log k). Robertson and Seymour (1986) generalized this considerably. Given a graph H, let F(H) denote the family of all graphs that contain H as a minor. As a corollary of their grid minor theorem, Robertson and Seymour proved that F(H) has the Erdős–Pósa property if and only if H is a planar graph. Moreover, it is now known that the corresponding bounding function is f(k) = Θ(k) if H is a forest (Fiorini, Joret & Wood 2013), while f(k) = Θ(k log k) for every other planar graph H (Cames van Batenburg et al. 2019). The special case where H is a triangle is equivalent to the Erdős–Pósa theorem.

gollark: > You agree that your mind, thoughts, soul and other distinguishing characteristics may be repurposed/utilized at any time for the training of GPT-██ or other artificial intelligences at the discretion of the PotatOS Advanced Projects team. You also agree that your soul may be temporarily6 be placed into various apioformic entities (see Appendix 6.7) for various purposes³. You can opt out of this by being soulless and an empty husk of what you once were. You are permitted to maintain consciousness as long as this does not negatively affect PotatOS™ operations. You agree that you either are a robot or may be converted into one if it is deemed necessary.
gollark: Under potatOS privacy policy clause 4.7 your soul can be harvested anyway.
gollark: 3.
gollark: I'm looking at adding a Soul Harvester feature to AutoBotRobot where it logs all messages here.
gollark: Ducko, would you be interested in PotatOS Soul Harvester 2.0™?

References

  • Erdős, Paul; Pósa, Lajos (1965). "On independent circuits contained in a graph". Canadian Journal of Mathematics. 17: 347–352. doi:10.4153/CJM-1965-035-8.CS1 maint: ref=harv (link)
  • Robertson, Neil; Seymour, Paul (1986). "Graph minors. V. Excluding a planar graph". Journal of Combinatorial Theory, Series B. 41: 92–114. doi:10.1016/0095-8956(86)90030-4.CS1 maint: ref=harv (link)
  • Voss, Heinz-Jürgen (1969). "Eigenschaften von Graphen, die keine k+1 knotenfremde Kreise enthalten". Mathematische Nachrichten. 40: 19–25. doi:10.1002/mana.19690400104.CS1 maint: ref=harv (link)
  • Lovász, László (1965). "On graphs not containing independent circuits". Mat. Lapok. 16: 289–299.CS1 maint: ref=harv (link)
  • Cames van Batenburg, Wouter; Huynh, Tony; Joret, Gwenaël; Raymond, Jean-Florent (2019). "A tight Erdős-Pósa function for planar minors". Advances in Combinatorics. 2: 33pp. doi:10.19086/aic.10807.CS1 maint: ref=harv (link)
  • Fiorini, Samuel; Joret, Gwenaël; Wood, David R. (2013). "Excluded Forest Minors and the Erdős–Pósa Property". Combinatorics, Probability and Computing. 22 (5): 700–721. arXiv:1204.5192. doi:10.1017/S0963548313000266.CS1 maint: ref=harv (link)

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.