Entropy power inequality

In information theory, the entropy power inequality is a result that relates to so-called "entropy power" of random variables. It shows that the entropy power of suitably well-behaved random variables is a superadditive function. The entropy power inequality was proved in 1948 by Claude Shannon in his seminal paper "A Mathematical Theory of Communication". Shannon also provided a sufficient condition for equality to hold; Stam (1959) showed that the condition is in fact necessary.

Statement of the inequality

For a random variable X : Ω  Rn with probability density function f : Rn  R, the differential entropy of X, denoted h(X), is defined to be

and the entropy power of X, denoted N(X), is defined to be

In particular, N(X) = |K| 1/n when X is normal distributed with covariance matrix K.

Let X and Y be independent random variables with probability density functions in the Lp space Lp(Rn) for some p > 1. Then

Moreover, equality holds if and only if X and Y are multivariate normal random variables with proportional covariance matrices.

gollark: It is part of my long term plan to undermine Golang.
gollark: Keep thinking that. or don't. or do.
gollark: My problem is that they all operate on "sockets" (well, file descriptors), despite doing entirely different things.
gollark: I don't think any of the actual individual API calls are.
gollark: Or, really, any safety and consistency at all.

See also

References

  • Dembo, Amir; Cover, Thomas M.; Thomas, Joy A. (1991). "Information-theoretic inequalities". IEEE Trans. Inf. Theory. 37 (6): 1501–1518. doi:10.1109/18.104312. MR 1134291. S2CID 845669.
  • Gardner, Richard J. (2002). "The Brunn–Minkowski inequality". Bull. Amer. Math. Soc. (N.S.). 39 (3): 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2.
  • Shannon, Claude E. (1948). "A mathematical theory of communication". Bell System Tech. J. 27 (3): 379–423, 623–656. doi:10.1002/j.1538-7305.1948.tb01338.x. hdl:10338.dmlcz/101429.
  • Stam, A. J. (1959). "Some inequalities satisfied by the quantities of information of Fisher and Shannon". Information and Control. 2 (2): 101–112. doi:10.1016/S0019-9958(59)90348-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.