Dirty data
Dirty data, also known as rogue data,[1] are inaccurate, incomplete or inconsistent data, especially in a computer system or database.[2]
Dirty data can contain such mistakes as spelling or punctuation errors, incorrect data associated with a field, incomplete or outdated data, or even data that has been duplicated in the database. They can be cleaned through a process known as data cleansing.[3]
Dirty Data (Social)
Following the definition of Gary T. Marx, Professor Emeritus of MIT, there are four types of data:[4]
- Nonsecretive and nondiscrediting data:
- Routinely available information.
- Secretive and nondiscrediting data:
- Strategic and fraternal secrets, privacy.
- Nonscretive and discrediting data:
- sanction immunity,
- normative dissensus,
- selective dissensus,
- making good on a threat for credibility,
- discovered dirty data.
- Secretive and discrediting data: Hidden and dirty data.
gollark: Unsurprisingly nobody did BF probably.
gollark: Looks like only one person did Haskell.
gollark: UNDERGO spontaneous tetrational apiogenesis.
gollark: <@319753218592866315> It is time.
gollark: There doesn't seem to be a way to *delete* files, so just don't make mistakes in that way.
See also
- Data janitor
- Signal noise
References
- Spotless version 12 out now
- Margaret Chu (2004), "What Are Dirty Data?", Blissful Data, p. 71 et seq, ISBN 9780814407806
- Wu, S. (2013), "A review on coarse warranty data and analysis" (PDF), Reliability Engineering and System, 114: 1–11, doi:10.1016/j.ress.2012.12.021
- "Notes on the discovery, collection, and assessment of hidden and". web.mit.edu. Retrieved 2017-02-17.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.