Differential capacitance

Differential capacitance in physics, electronics, and electrochemistry is a measure of the voltage-dependent capacitance of a nonlinear capacitor, such as an electrical double layer or a semiconductor diode. It is defined as the derivative of charge with respect to potential.[1][2]

Description

In electrochemistry differential capacitance is a parameter introduced for characterizing electrical double layers:

where σ is surface charge and ψ is electric surface potential


Capacitance is usually defined as the stored charge between two conducting surfaces separated by a dielectric divided by the voltage between the surfaces.  Another definition is the rate of change of the stored charge or surface charge (σ) divided by the rate of change of the voltage between the surfaces or the electric surface potential (ψ).  The latter is called the "differential capacitance," but usually the stored charge is directly proportional to the voltage, making the capacitances given by the two definitions equal.

This type of differential capacitance may be called "parallel plate capacitance," after the usual form of the capacitor.  However, the term is meaningful when applied to any two conducting bodies such as spheres, and not necessarily ones of the same size, for example, the elevated terminals of a Tesla wireless system and the earth.  These are widely spaced insulated conducting bodies positioned over a spherically conducting ground plane.[3]

"The differential capacitance between the spheres is obtained by assuming opposite charges ±q on them. . . ." [4]

Another form of differential capacitance refers to single isolated conducting bodies. It is usually discussed in books under the topic of "electrostatics."  This capacitance is best defined as the rate of change of charge stored in the body divided by the rate of change of the potential of the body.  The definition of the absolute potential of the body depends on what is selected as a reference.  This is sometimes referred to as the "self-capacitance" of a body.  If the body is a conducting sphere, the self-capacitance is proportional to its radius, and is roughly 1pF per centimetre of radius.

gollark: - As eating meat places suffering on millions of innocent animals, I believe animal meat should be replaced with human flesh from donors, as humans are able to meaningfully consent to this while animals are not (and don't get a choice in practice anyway).
gollark: - To increase the efficiency of the education system and encourage self-directed learning, I believe schools should lock children in individual cubicles with textbooks for 5 hours a day instead of using classrooms and teachers.
gollark: - It's important to me that women aren't forced to have children they don't want or may not be able to take care of.- which is why I support mandatory sterilization for all - children would be grown in vats and raised by the government instead.
gollark: - I support the right to privacy!- In light of governments' large-scale mass surveillance campaigns which they do not seem inclined to stop, I would support an open and transparent volunteer spying agency using open source software and hardware to gather and process data in order to act as a competitor.
gollark: These are hard...

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.