Diethanolamine

Diethanolamine, often abbreviated as DEA or DEOA, is an organic compound with the formula HN(CH2CH2OH)2. Pure diethanolamine is a white solid at room temperature, but its tendencies to absorb water and to supercool[2] mean it is often encountered as a colorless, viscous liquid. Diethanolamine is polyfunctional, being a secondary amine and a diol. Like other organic amines, diethanolamine acts as a weak base. Reflecting the hydrophilic character of the secondary amine and hydroxyl groups, DEA is soluble in water. Amides prepared from DEA are often also hydrophilic. In 2013, the chemical was classified by the International Agency for Research on Cancer as "possibly carcinogenic to humans" (Group 2B).

Diethanolamine
Names
IUPAC name
2,2'-aminodiethanol
Other names
  • Bis(hydroxyethyl)amine
  • N,N-Bis(2-hydroxyethyl)amine
  • 2,2'-Dihydroxydiethylamine
  • β,β'-Dihydroxydiethylamine
  • Diolamine
  • 2-[(2-Hydroxyethyl)amino]ethanol
  • 2,2'-Iminobisethanol
  • Iminodiethanol
  • Di(2-hydroxyethyl)amine
  • bis(2-Hydroxyethyl)amine
  • 2,2'-Iminodiethanol
Identifiers
3D model (JSmol)
3DMet
605315
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.517
EC Number
  • 203-868-0
KEGG
MeSH diethanolamine
RTECS number
  • KL2975000
UNII
Properties
C4H11NO2
Molar mass 105.137 g·mol−1
Appearance Colourless crystals
Odor Ammonia odor
Density 1.097 g·mL−1
Melting point 28.00 °C; 82.40 °F; 301.15 K
Boiling point 271.1 °C; 519.9 °F; 544.2 K
Miscible
log P -1.761
Vapor pressure <1 Pa (at 20 °C)
UV-vismax) 260 nm
1.477
Thermochemistry
137 J·K−1·mol−1
Std enthalpy of
formation fH298)
−496.4 – −491.2 kJ·mol−1
Std enthalpy of
combustion cH298)
−26.548 – −26.498 MJ·kmol−1
Hazards
Safety data sheet sciencelab.com
GHS pictograms
GHS Signal word Danger
GHS hazard statements
H302, H315, H318, H373
P280, P305+351+338
Flash point 138 °C (280 °F; 411 K)
365 °C (689 °F; 638 K)
Explosive limits 1.6–9.8%[1]
Lethal dose or concentration (LD, LC):
  • 120 mg·kg−1 (intraperitoneal, rat)
  • 710 mg·kg−1 (oral, rat)
  • 778 mg·kg−1 (intravaneous, rat)
  • 12.2 g·kg−1 (dermal, rabbit)
NIOSH (US health exposure limits):
PEL (Permissible)
None[1]
REL (Recommended)
TWA: 3 ppm (15 mg/m3)[1]
IDLH (Immediate danger)
N.D.[1]
Related compounds
Related alkanols
Related compounds
Diethylhydroxylamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Production

The reaction of ethylene oxide with aqueous ammonia first produces ethanolamine:

C2H4O + NH3 → H2NCH2CH2OH

which reacts with a second and third equivalent of ethylene oxide to give DEA and triethanolamine:

C2H4O + H2NCH2CH2OH → HN(CH2CH2OH)2
C2H4O + HN(CH2CH2OH)2 → N(CH2CH2OH)3

About 300M kg are produced annually in this way.[3] The ratio of the products can be controlled by changing the stoichiometry of the reactants.[4]

Uses

DEA is used as a surfactant and a corrosion inhibitor. It is used to remove hydrogen sulfide and carbon dioxide from natural gas.

In oil refineries, a DEA in water solution is commonly used to remove hydrogen sulfide from sour gas. It has an advantage over a similar amine, ethanolamine, in that a higher concentration may be used for the same corrosion potential. This allows refiners to scrub hydrogen sulfide at a lower circulating amine rate with less overall energy usage.

DEA is a chemical feedstock used in the production of morpholine.[3][4]

Amides derived from DEA and fatty acids, known as diethanolamides, are amphiphilic.

The reaction of 2-chloro-4,5-diphenyloxazole with DEA gave rise to Ditazole. The reaction of DEA and Isobutyraldehyde with water removed produces an Oxazolidine.

Commonly used ingredients that may contain DEA

DEA is used in the production of diethanolamides, which are common ingredients in cosmetics and shampoos added to confer a creamy texture and foaming action. Consequently, some cosmetics that include diethanolamides as ingredients may contain traces of DEA. Some of the most commonly used diethanolamides include:

  • Cocamide DEA
  • DEA-Cetyl Phosphate
  • DEA Oleth-3 Phosphate
  • Lauramide DEA
  • Myristamide DEA
  • Oleamide DEA

Safety

DEA is a potential skin irritant in workers sensitized by exposure to water-based metalworking fluids.[5] One study showed that DEA inhibits in baby mice the absorption of choline, which is necessary for brain development and maintenance;[6] however, a study in humans determined that dermal treatment for 1 month with a commercially available skin lotion containing DEA resulted in DEA levels that were "far below those concentrations associated with perturbed brain development in the mouse".[7] In a mouse study of chronic exposure to inhaled DEA at high concentrations (above 150 mg/m3), DEA was found to induce body and organ weight changes, clinical and histopathological changes, indicative of mild blood, liver, kidney and testicular systemic toxicity.[8] A 2009 study found that DEA has potential acute, chronic and subchronic toxicity properties for aquatic species.[9]

gollark: Not really.
gollark: Or proxy to FastCGI (for PHP etc).
gollark: Well, if you want, or it can just serve static files.
gollark: Nginx matches that and delegates requests appropriately.
gollark: And/or SNI, for TLS.

References

  1. NIOSH Pocket Guide to Chemical Hazards. "#0208". National Institute for Occupational Safety and Health (NIOSH).
  2. "Akzo-Nobel data sheet" (PDF). Retrieved 2013-08-14.
  3. Matthias Frauenkron, Johann-Peter M elder, Günther Ruider, Roland Rossbacher, Hartmut Höke “Ethanolamines and Propanolamines” in Ullmann's Encyclopedia of Industrial Chemistry 2002 by Wiley-VCH, Weinheim doi:10.1002/14356007.a10_001
  4. Klaus Weissermel; Hans-Jürgen Arpe; Charlet R. Lindley; Stephen Hawkins (2003). "Chap. 7. Oxidation Products of Ethylene". Industrial Organic Chemistry. Wiley-VCH. pp. 159–161. ISBN 978-3-527-30578-0.
  5. Lessmann H, Uter W, Schnuch A, Geier J (2009). "Skin sensitizing properties of the ethanolamines mono-, di-, and triethanolamine. Data analysis of a multicentre surveillance network (IVDK*) and review of the literature". Contact Dermatitis. 60 (5): 243–255. doi:10.1111/j.1600-0536.2009.01506.x. PMID 19397616.
  6. Study Shows Ingredient Commonly Found In Shampoos May Inhibit Brain Development
  7. Craciunescu, CN; Niculescu, MD; Guo, Z; Johnson, AR; Fischer, L; Zeisel, SH (2009). "Dose response effects of dermally applied diethanolamine on neurogenesis in fetal mouse hippocampus and potential exposure of humans". Toxicological Sciences. 107 (1): 220–6. doi:10.1093/toxsci/kfn227. PMC 2638646. PMID 18948303.
  8. Gamer AO, Rossbacher R, Kaufmann W, van Ravenzwaay B (2008). "The inhalation toxicity of di- and triethanolamine upon repeated exposure". Food Chem Toxicol. 46 (6): 2173–83. doi:10.1016/j.fct.2008.02.020. PMID 18420328.
  9. Libralato G, Volpi Ghirardini A, Avezzù F (2009). "Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine". J Hazard Mater. 176 (1–3): 535–9. doi:10.1016/j.jhazmat.2009.11.062. PMID 20022426.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.