Diagonal form
In mathematics, a diagonal form is an algebraic form (homogeneous polynomial) without cross-terms involving different indeterminates. That is, it is
for some given degree m, summed for 1 ≤ i ≤ n.
Such forms F, and the hypersurfaces F = 0 they define in projective space, are very special in geometric terms, with many symmetries. They also include famous cases like the Fermat curves, and other examples well known in the theory of Diophantine equations.
A great deal has been worked out about their theory: algebraic geometry, local zeta-functions via Jacobi sums, Hardy-Littlewood circle method.
Examples
- is the unit circle in P2
- is the unit hyperbola in P2.
- gives the Fermat cubic surface in P3 with 27 lines. The 27 lines in this example are easy to describe explicitly: they are the 9 lines of the form (x : ax : y : by) where a and b are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates.
- gives a K3 surface in P3.
gollark: As opposed to the *general* number field sieve, which is just too complicated.
gollark: No, you should tell everyone about the quadratic number field sieve.
gollark: I contain -19071821895 hydrogen ions, yes.
gollark: I too love breaking the entire site for users with JS disabled.
gollark: Some of them are, but regardless, a lot of the time they are used on *news websites* and *personal sites* and such, which could literally just be a folder of static HTML and images with maybe some progressive enhancement JS.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.