Degenerate Higher-Order Scalar-Tensor theories

Degenerate Higher-Order Scalar-Tensor theories (or DHOST theories) are theories of modified gravity. They have a Lagrangian containing second-order derivatives of a scalar field but do not generate ghosts (kinetic excitations with negative kinetic energy), because they only contain one propagating scalar mode (as well as the two usual tensor modes).[1][2]

History

DHOST theories were introduced in 2015 by David Langlois and Karim Noui.[3][4] They are a generalisation of Beyond Horndeski (or GLPV) theories, which are themselves a generalisation of Horndeski theories. The equations of motion of Horndeski theories contain only two derivatives of the metric and the scalar field, and it was believed that only equations of motion of this form would not contain an extra scalar degree of freedom (which would lead to unwanted ghosts).[5] However, it was first shown that a class of theories now named Beyond Horndeski also avoided the extra degree of freedom. Originally theories which were quadratic in the second derivative of the scalar field were studied, but DHOST theories up to cubic order have now been studied.[5]

Action

All DHOST theories depend on a scalar field . The general action of DHOST theories is given by[5]

where is the kinetic energy of the scalar field, , and the quadratic terms in are given by

where

and the cubic terms are given by

where

The and are arbitrary functions of and .

gollark: The buttons on my melon vending machines no longer work because I can't set them as rightclickable.
gollark: A lot of claim-related permissions were removed a while ago. I don't know why.
gollark: Well, actually I think those mostly just died to people getting bored of development.
gollark: Which is why nobody's stock markets work either.
gollark: Nobody wants to do the boring parts of companies, like hiring people, turning up to work for an identical amount of time every day to do random stuff, and accounting.

References

  1. Frusciante, Noemi; Kase, Kyotaro; Koyama, Kazuya; Tsujikawa, Shinji; Vernieri, Daniele (2019). "Tracker and scaling solutions in DHOST theories". Physics Letters B. 790: 167–175. doi:10.1016/j.physletb.2019.01.009.
  2. Langlois, David; Mancarella, Michele; Noui, Karim; Vernizzi, Filippo (2019). "Mimetic gravity as DHOST theories". Journal of Cosmology and Astroparticle Physics. 2019 (2): 036. arXiv:1802.03394. doi:10.1088/1475-7516/2019/02/036.
  3. Langlois, David; Noui, Karim (2016). "Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability". Journal of Cosmology and Astroparticle Physics. arXiv:1510.06930. doi:10.1088/1475-7516/2016/02/034.
  4. Langlois, David; Noui, Karim (2016). "Hamiltonian analysis of higher derivative scalar-tensor theories". Journal of Cosmology and Astroparticle Physics. arXiv:1512.06820. doi:10.1088/1475-7516/2016/07/016.
  5. Langlois, David (2017). "Degenerate Higher-Order Scalar-Tensor (DHOST) theories". arXiv:1707.03625 [gr-qc].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.