Death's Duel

Death's Duel is the final sermon delivered by John Donne as the Dean of St. Paul's Cathedral. Donne received notice to preach the sermon on the first Friday of Lent (12 February, 1631[1] ) and preached the sermon on 25 February, 1631.[2] The sermon was likely written out in full prior to Donne preaching it as it was subsequently prepared for publication.[1] The act of preaching exhausted Donne. To those he had preached to, it seemed as though he had delivered his own death sermon.[2] The sermon was entered in the Stationers' Register on 30 September, 1631, although not with its title which first appeared in print along with a 1632 date.[3] Donne died on 31 March, 1631.

Content

In Death's Duel, Donne returns to the themes found in many of his works, particularly that of death and resurrection. He confronts the physical reality of death before moving to the idea of the final resurrection. He ultimately discusses the life of Jesus Christ and that if he could confront the horrors of dying for mankind, then so can we.

gollark: I can come up with a thing to transmit ubqmachine™ details to osmarks.net or whatever which people can embed in their code.
gollark: It's an x86-64 system using debian or something.
gollark: > `import hashlib`Hashlib is still important!> `for entry, ubq323 in {**globals(), **__builtins__, **sys.__dict__, **locals(), CONSTANT: Entry()}.items():`Iterate over a bunch of things. I think only the builtins and globals are actually used.The stuff under here using `blake2s` stuff is actually written to be ridiculously unportable, to hinder analysis. This caused issues when trying to run it, so I had to hackily patch in the `/local` thing a few minutes before the deadline.> `for PyObject in gc.get_objects():`When I found out that you could iterate over all objects ever, this had to be incorporated somehow. This actually just looks for some random `os` function, and when it finds it loads the obfuscated code.> `F, G, H, I = typing(lookup[7]), typing(lookup[8]), __import__("functools"), lambda h, i, *a: F(G(h, i))`This is just a convoluted way to define `enumerate(range))` in one nice function.> `print(len(lookup), lookup[3], typing(lookup[3])) #`This is what actually loads the obfuscated stuff. I think.> `class int(typing(lookup[0])):`Here we subclass `complex`. `complex` is used for 2D coordinates within the thing, so I added some helper methods, such as `__iter__`, allowing unpacking of complex numbers into real and imaginary parts, `abs`, which generates a complex number a+ai, and `ℝ`, which provvides the floored real parts of two things.> `class Mаtrix:`This is where the magic happens. It actually uses unicode homoglyphs again, for purposes.> `self = typing("dab7d4733079c8be454e64192ce9d20a91571da25fc443249fc0be859b227e5d")`> `rows = gc`I forgot what exactly the `typing` call is looking up, but these aren't used for anything but making the fake type annotations work.> `def __init__(rows: self, self: rows):`This slightly nonidiomatic function simply initializes the matrix's internals from the 2D array used for inputs.> `if 1 > (typing(lookup[1]) in dir(self)):`A convoluted way to get whether something has `__iter__` or not.
gollark: If you guess randomly the chance of getting none right is 35%ish.
gollark: Anyway, going through #12 in order:> `import math, collections, random, gc, hashlib, sys, hashlib, smtplib, importlib, os.path, itertools, hashlib`> `import hashlib`We need some libraries to work with. Hashlib is very important, so to be sure we have hashlib we make sure to keep importing it.> `ℤ = int`> `ℝ = float`> `Row = "__iter__"`Create some aliases for int and float to make it mildly more obfuscated. `Row` is not used directly in anywhere significant.> `lookup = [...]`These are a bunch of hashes used to look up globals/objects. Some of them are not actually used. There is deliberately a comma missing, because of weird python string concattey things.```pythondef aes256(x, X): import hashlib A = bytearray() for Α, Ҙ in zip(x, hashlib.shake_128(X).digest(x.__len__())): A.append(Α ^ Ҙ) import zlib, marshal, hashlib exec(marshal.loads(zlib.decompress(A)))```Obviously, this is not actual AES-256. It is abusing SHAKE-128's variable length digests to implement what is almost certainly an awful stream cipher. The arbitrary-length hash of our key, X, is XORed with the data. Finally, the result of this is decompressed, loaded (as a marshalled function, which is extremely unportable bytecode I believe), and executed. This is only used to load one piece of obfuscated code, which I may explain later.> `class Entry(ℝ):`This is also only used once, in `typing` below. Its `__init__` function implements Rule 110 in a weird and vaguely golfy way involving some sets and bit manipulation. It inherits from float, but I don't think this does much.> `#raise SystemExit(0)`I did this while debugging the rule 110 but I thought it would be fun to leave it in.> `def typing(CONSTANT: __import__("urllib3")):`This is an obfuscated way to look up objects and load our obfuscated code.> `return getattr(Entry, CONSTANT)`I had significant performance problems, so this incorporates a cache. This was cooler™️ than dicts.

References

  1. Bald, R.C. (1970). John Donne: A Life. Oxford: Oxford University Press. p. 525.
  2. Bald, R.C. (1970). John Donne: A Life. Oxford: Oxford University Press. p. 526.
  3. Bald, R.C. (1970). John Donne: A Life. Oxford: Oxford University Press. p. 529.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.