Daniel Weston Homestead

The Daniel Weston Homestead is a historic house on Maine State Route 32 in Bremen, Maine. Built about 1806 by a son of one of the area's first colonial settlers, it is a well-preserved local example of Federal period architecture. It was listed on the National Register of Historic Places in 1979.[1]

Daniel Weston Homestead
LocationSR 32 at Shore Rd., Bremen, Maine
Coordinates44°0′6″N 69°25′43″W
Area1 acre (0.40 ha)
Built1806 (1806)
Built byWeston, Daniel
Architectural styleFederal
NRHP reference No.79000157[1]
Added to NRHPOctober 1, 1979

Description and history

The Daniel Weston Homestead stands at a bend in the road of SR 32, on the north side of the road opposite its junction with Shore Road. It is a 2-1/2 story wood frame structure, with a gabled roof, central chimney, clapboarded exterior, and fieldstone foundation. The main portion is L-shaped, with a shed and barn extending west and then south. The original main entrance is on the five-bay east facade, with a vertical-board door framed by sidelight windows and pilasters, and topped by an entablature with dentillated cornice. The south-facing secondary entrance is more modest, with a four-light transom topped by an entablature and simple cornice. The interior retains many original period finishes, including floors, paneling, wainscoting, and fireplace surrounds.[2]

The house was built about 1806 by Daniel Weston, whose father and uncle were among the first settlers of the Bremen area, arriving in 1772. Weston was, like his father, a shipbuilder, and the construction of this house exhibits some features peculiar to that specialized craft. Much of the woodwork is slightly curvilinear, and in the upper story, the ceilings have been curved inward to achieve greater height than is typically found in period houses.[2]

gollark: So, I finished that to highly dubious demand. I'd like to know how #11 and such work.
gollark: > `x = _(int(0, e), int(e, е))`You may note that this would produce slices of 0 size. However, one of the `e`s is a homoglyph; it contains `2 * e`.`return Result[0][0], x, m@set({int(e, 0), int(е, e)}), w`From this, it's fairly obvious what `strassen` *really* does - partition `m1` into 4 block matrices of half (rounded up to the nearest power of 2) size.> `E = typing(lookup[2])`I forgot what this is meant to contain. It probably isn't important.> `def exponentiate(m1, m2):`This is the actual multiplication bit.> `if m1.n == 1: return Mаtrix([[m1.bigData[0] * m2.bigData[0]]])`Recursion base case. 1-sized matrices are merely multiplied scalarly.> `aa, ab, ac, ad = strassen(m1)`> `аa, аb, аc, аd = strassen(m2)`More use of homoglyph confusion here. The matrices are quartered.> `m = m1.subtract(exponentiate(aa, аa) ** exponentiate(ab, аc), exponentiate(aa, аb) ** exponentiate(ab, аd), exponentiate(ac, аa) ** exponentiate(ad, аc), exponentiate(ac, аb) ** exponentiate(ad, аd)) @ [-0j, int.abs(m2.n * 3, m1.n)]`This does matrix multiplication in an inefficient *recursive* way; the Strassen algorithm could save one of eight multiplications here, which is more efficient (on big matrices). It also removes the zero padding.> `m = exponentiate(Mаtrix(m1), Mаtrix(m2)) @ (0j * math.sin(math.asin(math.sin(math.asin(math.sin(math.e))))), int(len(m1), len(m1)))`This multiples them and I think also removes the zero padding again, as we want it to be really very removed.> `i += 1`This was added as a counter used to ensure that it was usably performant during development.> `math.factorial = math.sinh`Unfortunately, Python's factorial function has really rather restrictive size limits.> `for row in range(m.n):`This converts back into the 2D array format.> `for performance in sorted(dir(gc)): getattr(gc, performance)()`Do random fun things to the GC.
gollark: > `globals()[Row + Row] = random.randint(*sys.version_info[:2])`Never actually got used anywhere.> `ε = sys.float_info.epsilon`Also not used. I just like epsilons.> `def __exit__(self, _, _________, _______):`This is also empty, because cleaning up the `_` global would be silly. It'll be overwritten anyway. This does serve a purpose, however, and not just in making it usable as a context manager. This actually swallows all errors, which is used in some places.> `def __pow__(self, m2):`As ever, this is not actual exponentiation. `for i, (ι, 𐌉) in enumerate(zip(self.bigData, m2.bigData)): e.bigData[i] = ι + 𐌉` is in fact just plain and simple addition of two matrices.> `def subtract(forth, 𝕒, polynomial, c, vector_space):`This just merges 4 submatrices back into one matrix.> `with out as out, out, forth:`Apart from capturing the exceptions, this doesn't really do much either. The `_` provided by the context manager is not used.> `_(0j, int(0, 𝕒.n))`Yes, it's used in this line. However, this doesn't actually have any effect whatsoever on the execution of this. So I ignore it. It was merely a distraction.> `with Mаtrix(ℤ(ℤ(4))):`It is used again to swallow exceptions. After this is just some fluff again.> `def strassen(m, x= 3.1415935258989):`This is an interesting part. Despite being called `strassen`, it does not actually implement the Strassen algorithm, which is a somewhat more efficient way to multiply matrices than the naive way used in - as far as I can tell - every entry.> `e = 2 ** (math.ceil(math.log2(m.n)) - 1)`This gets the next power of two in a fairly obvious way. It is used to pad out the matrix to the next power of 2 size.> `with m:`The context manager is used again for nicer lookups.> `Result[0] += [_(0j, int(e, e))]`Weird pythonoquirkiness again. You can append to lists in tuples with `+=`, but it throws an exception as they're sort of immutable.> `typing(lookup[4])(input())`It's entirely possible that this does things.
gollark: > `def __eq__(self, xy): return self.bigData[math.floor(xy.real * self.n + xy.imag)]`This actually gets indices into the matrix. I named it badly for accursedness. It uses complex number coordinates.> `def __matmul__(self, ǫ):`*This* function gets a 2D "slice" of the matrix between the specified coordinates. > `for (fοr, k), (b, р), (whіle, namedtuple) in itertools.product(I(*int.ℝ(start, end)), enumerate(range(ℤ(start.imag), math.floor(end.imag))), (ǫ, ǫ)):`This is really just bizarre obfuscation for the basic "go through every X/Y in the slice" thing.> `out[b * 1j + fοr] = 0`In case the matrix is too big, just pad it with zeros.> `except ZeroDivisionError:`In case of zero divisions, which cannot actually *happen*, we replace 0 with 1 except this doesn't actually work.> `import hashlib`As ever, we need hashlib.> `memmove(id(0), id(1), 27)`It *particularly* doesn't work because we never imported this name.> `def __setitem__(octonion, self, v):`This sets either slices or single items of the matrix. I would have made it use a cool™️ operator, but this has three parameters, unlike the other ones. It's possible that I could have created a temporary "thing setting handle" or something like that and used two operators, but I didn't.> `octonion[sedenion(malloc, entry, 20290, 15356, 44155, 30815, 37242, 61770, 64291, 20834, 47111, 326, 11094, 37556, 28513, 11322)] = v == int(bool, b)`Set each element in the slice. The sharp-eyed may wonder where `sedenion` comes from.> `"""`> `for testing`> `def __repr__(m):`This was genuinely for testing, although the implementation here was more advanced.> `def __enter__(The_Matrix: 2):`This allows use of `Matrix` objects as context managers.> `globals()[f"""_"""] = lambda h, Ĥ: The_Matrix@(h,Ĥ)`This puts the matrix slicing thing into a convenient function accessible globally (as long as the context manager is running). This is used a bit below.
gollark: * desired

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.