Cubic form

In mathematics, a cubic form is a homogeneous polynomial of degree 3, and a cubic hypersurface is the zero set of a cubic form. In the case of a cubic form in three variables, the zero set is a cubic plane curve.

In (Delone & Faddeev 1964), Boris Delone and Dmitry Faddeev showed that binary cubic forms with integer coefficients can be used to parametrize orders in cubic fields. Their work was generalized in (Gan, Gross & Savin 2002, §4) to include all cubic rings,[1][2] giving a discriminant-preserving bijection between orbits of a GL(2, Z)-action on the space of integral binary cubic forms and cubic rings up to isomorphism.

The classification of real cubic forms is linked to the classification of umbilical points of surfaces. The equivalence classes of such cubics form a three-dimensional real projective space and the subset of parabolic forms define a surface – the umbilic torus.[3]

Examples

Notes

  1. A cubic ring is a ring that is isomorphic to Z3 as a Z-module.
  2. In fact, Pierre Deligne pointed out that the correspondence works over an arbitrary scheme.
  3. Porteous, Ian R. (2001), Geometric Differentiation, For the Intelligence of Curves and Surfaces (2nd ed.), Cambridge University Press, p. 350, ISBN 978-0-521-00264-6
gollark: Any advice on making *useful* supersoldiers would be appreciated for my ~~evil world domination program~~ world optimization program™, since nobody seems to want to *elect* me as supreme world dictator for life.
gollark: You could probably also give people tetrachromia, but again, it only seems marginally useful.
gollark: We have technological night vision goggles. Which are probably cheaper than genetically engineering people.
gollark: I do know about the various design flaws, but also we can compensate with technology.
gollark: I guess better eyes would be slightly useful.

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.