Cubic-square tiling honeycomb

In the geometry of hyperbolic 3-space, the cubic-square tiling honeycomb is a paracompact uniform honeycomb, constructed from cube and square tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

Cubic-square tiling honeycomb
TypeParacompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol{(4,4,3,4)}, {(4,3,4,4)}
Coxeter diagrams or
=
Cells{4,3}
{4,4}
r{4,4}
Facessquare {4}
Vertex figure
Rhombicuboctahedron
Coxeter group[(4,4,4,3)]
PropertiesVertex-transitive, edge-transitive

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It represents a semiregular honeycomb as defined by all regular cells, although from the Wythoff construction, rectified square tiling r{4,4}, becomes the regular square tiling {4,4}.

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(4,4,4,3*] symmetry, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram . Another lower symmetry constructions exists with symmetry [(4,4,(4,3)*)], index 48 and an ideal regular octahedral fundamental domain.

gollark: ... nobody is enforcing that, some things are just hard and/or undesired.
gollark: I suppose it's reasonable to just blame other people's different preferences and the high capital cost of phone manufacturing rather than just "the market" but meh.
gollark: I want a phone which doesn't look terrible, but I also don't care that much about aesthetics and want something cheap, durable, and functional, and apparently the market doesn't want to provide that.
gollark: Great, *more* expensive pointless designs.
gollark: I mean, anyone behind you could see what's on the screen, and you wouldn't be able to see stuff against some backgrounds.

See also

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I,II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.