Count Alois von Beckh Widmanstätten

Count Alois von Beckh Widmanstätten (13 July 1753 10 June 1849) was an Austrian printer and scientist. His name is sometimes given as Alois von Beckh-Widmannstätten or Aloys Beck, Edler von Widmannstätten.

Working life

During his youth, he was trained in the printing art by his father. His family owned exclusive printing rights in the Steiermark province, but this was lost in 1784 and Alois sold the business in 1807. In 1804, he ran a spinning mill in Pottendorf, Austria.

Starting in 1807, he was placed in charge of the Fabriksproduktenkabinett, a private collection of technology owned by the Emperor. In 1808, he was the director of the Imperial Porcelain works in Vienna.

Widmanstätten pattern appears when an iron meteorite is sliced, polished and etched with nitric acid

Widmanstätten pattern

In 1808, he independently discovered some metallographic patterns in iron meteorites, that came to be called Widmanstätten patterns,[1][2] by flame-heating a slab of Hraschina meteorite.[3][4] The different iron alloys of meteorites oxidized at different rates during heating, causing color and luster differences.[5]

Widmanstätten did not publish his discovery, but did communicate it orally with colleagues. Nevertheless, the pattern came to be known by his name, particularly after Carl von Schreibers, director of the Vienna Mineral and Zoology Cabinet, named the structure after Widmanstätten in his 1820 catalogue.[6]

The Widmanstätten pattern had been observed previously, in 1804, by the English mineralogist William (Guglielmo) Thomson. During the period that he spent in Naples, he discovered these figures by bathing a Krasnojarsk meteorite in nitric acid for the purpose of removing rust. In 1804, Thomson published his discovery in French in the Bibliothèque Britannique,[7][6]:125[8][9] but Thomson had chronological priority for the discovery.[6][8][10]

Named after him

gollark: There are various things I would like to do if I had significant amounts of moneycash™.
gollark: It's spelt "stonks", not "stocks".
gollark: You could do better things, such as purchasing a premium osmarks.tk subscription.
gollark: "hmm yes I will spend several tens of thousands of £ demonstrating to a few random people that I have money" - mostly idiots.
gollark: It's a very expensive reminder.

See also

Notes

  1. In a letter of 22 June 1812, German physicist Ernst Chladni told N.A. Neumann, a professor of chemistry in Prague, that Widmanstätten had observed patterns in the surface of a meteorite that had been etched with nitric acid. Neumann, N.A. (September 1812). "Der verwünschte Berggraf in Ellbogen, ein Meteorolit" [The accursed governor of the castle in Elbogen [now: Loket, Czech Republic], a meteorite]. Hesperus, ein Nationalblatt für gebildete Leser (Hesperus, a national newspaper for intellectual readers) (in German). 1 (55): 433–437. From p. 435: "Dasselbe Gefüge ist auch bei noch manchem andern Gediegeneisen mehr oder weniger bemerkbar, und ist unstreitig der Grund von der Erscheinung, die Hr. von Widmannstädten in Wien zuerst an dem Agramer und noch ein paar Arten von Gediegeneisen beobachtet hat, daß wenn man eine Fläche polirt, und mit Scheidewasser äzt, sich Figuren zeigen, die aus parallen geraden Streifen bestehen, welche in verschiedenen Richtungen gegen einander gestellt sind." (The same figure is also more or less noticeable in some other native irons, and is indisputably the basis of the phenomenon that Mr. von Widmannstädten in Vienna first observed in the Agram [now: Hrašćina, Croatia] [meteorite] and in a few other types of native iron, [namely,] that when one polishes a surface [of such a meteorite] and etches it with nitric acid, figures show themselves which consist of parallel straight lines, which are positioned in various directions relative to each other.)
  2. Schreibers, Carl von (1820) Beyträge zur Geschichte und Kenntniß meteorischer Stein- und Metall-Massen und der Erscheinungen, welche deren Niederfallen zu begleiten pflegen [Contributions to the history and knowledge of meteoric stony- and metallic masses, and the phenomena which usually accompany their showers] (Vienna, Austria: J.G. Heuber, 1820), pp. 70-71. (in German)
  3. Meteoritics & planetary science: Volume 42, Ed. 9-12. Meteoritical Society at the University of Arkansas, Department of Chemistry and Biochemistry, 2007
  4. O. Richard Norton. Rocks from Space: Meteorites and Meteorite Hunters. Mountain Press Pub. (1998) ISBN 0-87842-373-7
  5. Cohn, E., Meteoritenkunde [The study of meteorites] (Stuttgart, Germany: E. Schweizerbart, 1894), pp. 40–41. From pp. 40–41: "Von hervorragender Bedeutung für das Studium des Nickeleisen wurde jedoch erst die Entdeckung des Directors der kaiserlichen Porcellanfabrik in Wien, Alois von Widmanstätten, im Jahre 1808. Als er auf Veranlassung von Schreibers prüfen wollte, wie sich eine polirte Platte von Hraschina beim starken Erhitzen verhalte, erhielt keine einheitliche Anlauffarbe, sondern Partien mit verschiedenen Anlauffarben, welche regelmässig angeordnet waren und zierliche Zeichnungen lieferten. … Bald darauf bewirkte er die oberflächliche Oxydation durch Behandlung mit Salpetersäure statt durch Erhitzung, untersuchte nach dieser Richtung noch eine Reihe anderer Eisen (Mexico, Elbogen, Lenarto) und benutzte solche polirten und geätzten Platten direct zur Vervielfältigung durch Druck …. Damit war nachgewiesen, dass in vielen Meteoreisen das Nickeleisen nicht eine homogene Masse ist, wie es ohne nähere Untersuchung den Anschein hat, sondern dass es sich aus Theilen von verschiedener Oxydirbarkeit aufbaut. Die beim Ätzen entstehenden Figuren wurden bald allgemein nach dem Entdecker als Widmanstätten'sche Figuren bezeichnet." (Of paramount importance for the study of nickel-iron [meteorites], however, was the discovery of the director of the imperial porcelain factory in Vienna, Alois von Widmanstätten, in 1808. When, at Schreibers' urging, he wanted to test how a polished slice of the Hraschina [meteorite] behaved during strong heating, [it] didn't attain a uniform color during warming; rather, [there appeared] parts with different colors during warming, which were regularly ordered and yielded fine patterns of lines. … Soon thereafter he produced the surface oxidation by treatment with nitric acid instead of heat; he investigated in this way a series of other iron [meteorites] ([from] Mexico, Elbogen [now: Loket, Czech Republic], Lenarto [now in Slovakia]) and used such polished and etched slices to reproduce [impressions of the Widmanstätten patterns] directly by printing [i.e., by applying ink to the etched slices] …. Thereby [it] was proved that in many meteoric irons, the nickel-iron is not a homogeneous mass, as it appears without closer investigation, but that it formed from parts of varying susceptibility to oxidation. The figures arising during etching were soon generally named, after the discoverer, "Widmanstätten figures.")
  6. John G. Burke. Cosmic Debris: Meteorites in History. University of California Press, 1986. ISBN 0-520-05651-5
  7. Thomson, G. (1804) "Essai sur le fer malléable trouvé en Sibérie par le Prof. Pallas" (Essay on malleable iron found in Siberia by Prof. Pallas), Bibliotèque Britannique, 27 : 135–154 ; 209–229. (in French)
  8. Torrens, Hugh S. (2006) "The geological work of Gregory Watt, his travels with William Maclure in Italy (1801–1802), and Watt's "proto-geological" map of Italy (1804)" in: Vai, Gian Battista; Caldwell, W. Glen E., ed.s, The Origins of Geology in Italy (Boulder, Colorado: The Geological Society of America, 2006) ISBN 0-8137-2411-2, p.184
  9. Paneth, F.A. (1960). "The discovery and earliest reproductions of the Widmanstatten figures". Geochimica et Cosmochimica Acta. 18 (3): 176–182. doi:10.1016/0016-7037(60)90085-5.
  10. O. Richard Norton. The Cambridge encyclopedia of meteorites. Cambridge, Cambridge University Press, 2002. ISBN 0-521-62143-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.