Continuous q-Laguerre polynomials
In mathematics, the continuous q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by ]][1]。
Orthogonality
Recurrence and difference relations
Rodrigues formula
Generating function
gollark: ```{-# LANGUAGE EmptyDataDecls #-}{-# LANGUAGE FlexibleContexts #-}{-# LANGUAGE GADTs #-}{-# LANGUAGE GeneralizedNewtypeDeriving #-}{-# LANGUAGE MultiParamTypeClasses #-}{-# LANGUAGE OverloadedStrings #-}{-# LANGUAGE QuasiQuotes #-}{-# LANGUAGE TemplateHaskell #-}{-# LANGUAGE TypeFamilies #-}{-# LANGUAGE DeriveGeneric #-}{-# LANGUAGE FlexibleInstances #-}{-# LANGUAGE RecordWildCards #-}```I needed all this just to use `persistent`.
gollark: I'll try and dredge up my old Haskell project.
gollark: Monad transformers, for one thing...
gollark: I'm using "monads" as a stand-in for "monads and the other crazy whatevers".
gollark: For my random bodging, I probably want it to be interpreted, don't care about speed, and do not want to spent 5 hours mucking around with monads or something.
References
- Roelof Koekoek, Peter Lesky, Rene Swarttouw,Hypergeometric Orthogonal Polynomials and Their q-Analogues, p514, Springer
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18
|contribution-url=
missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.