Congruence ideal
In algebra, the congruence ideal of a surjective ring homomorphism f : B → C of commutative rings is the image under f of the annihilator of the kernel of f.
It is called a congruence ideal because when B is a Hecke algebra and f is a homomorphism corresponding to a modular form, the congruence ideal describes congruences between the modular form of f and other modular forms.
Example
- Suppose C and D are rings with homomorphisms to a ring E, and let B = C×ED be the pullback, given by the subring of C×D of pairs (c,d) where c and d have the same image in E. If f is the natural projection from B to C, then the kernel is the ideal J of elements (0,d) where d has image 0 in E. If J has annihilator 0 in D, then its annihilator in B is just the kernel I of the map from C to E. So the congruence ideal of f is the ideal (I,0) of B.
- Suppose that B is the Hecke algebra generated by Hecke operators Tn acting on the 2-dimensional space of modular forms of level 1 and weight 12.This space is 2 dimensional, spanned by the Eigenforms given by the Eisenstein series E12 and the modular discriminant Δ. The map taking a Hecke operator Tn to its eigenvalues (σ11(n),τ(n)) gives a homomorphism from B into the ring Z×Z (where τ is the Ramanujan tau function and σ11(n) is the sum of the 11th powers of the divisors of n). The image is the set of pairs (c,d) with c and d congruent mod 619 because of Ramanujan's congruence σ11(n) ≡ τ(n) mod 691. If f is the homomorphism taking (c,d) to c in Z, then the congruence ideal is (691). So the congruence ideal describes the congruences between the forms E12 and Δ.
gollark: It does seem like the governments responding to this have two states: completely ignoring the problem and wildly implementing over-the-top restrictions too late.
gollark: They do have other non-coronavirus stuff to compute too, don't they?
gollark: FTL: Faster than Light, a spaaaaaace roguelike thing, has players able to do all kinds of cool tricks because of interesting interactions between things, but the AI is dumb and can't do those. It can't even do prioritization right.
gollark: Which would be fun and interesting!
gollark: Some games would be a lot harder with competent enemy AI.
References
- Lenstra, H. W. (1995), "Complete intersections and Gorenstein rings", in Coates, John (ed.), Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, pp. 99–109, ISBN 1-57146-026-8, MR 1363497, Zbl 0860.13012
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.