Compound of two tetrahedra

In geometry, a compound of two tetrahedra is constructed by two overlapping tetrahedra, usually implied as regular tetrahedra.

Pair of two dual tetrahedra

Stellated octahedron

There is only one uniform polyhedral compound, the stellated octahedron, which has octahedral symmetry, order 48. It has a regular octahedron core, and shares the same 8 vertices with the cube.

A tetrahedron and its dual tetrahedron
The intersection of both solids is the octahedron, and their convex hull is the cube.
Orthographic projections from the different symmetry axes
If the edge crossings were vertices, the mapping on a sphere would be the same as that of a rhombic dodecahedron.

Lower symmetry constructions

There are lower symmetry variations on this compound, based on lower symmetry forms of the tetrahedron.

Examples
D4h, [4,2], order 16 C4v, [4], order 8 D3d, [2+,6], order 12

Compound of two tetragonal disphenoids in square prism
ß{2,4} or

Compound of two digonal disphenoids

Compound of two
right triangular pyramids in triangular trapezohedron

Other compounds

If two regular tetrahedra are given the same orientation on the 3-fold axis, a different compound is made, with D3h, [3,2] symmetry, order 12.

Other orientations can be chosen as 2 tetrahedra within the compound of five tetrahedra and compound of ten tetrahedra the latter of which can be seen as a hexagrammic pyramid:

gollark: The cube was meant to be all, see.
gollark: Yes.
gollark: Spoilers!
gollark: ↑ ↑ ↑ ↑ ↑
gollark: Macron (game).

See also

References

  • Cundy, H. and Rollett, A. Five Tetrahedra in a Dodecahedron. §3.10.8 in Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 139-141, 1989.
  • Weisstein, Eric W. "Compound of two tetrahedra". MathWorld.
  • Compounds of Polyhedra VRML model:
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.