Comparison of Gaussian process software

This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations.

This article is written from the point of view of Bayesian statistics, which may use a terminology different from the one commonly used in kriging. The next section should clarify the mathematical/computational meaning of the information provided in the table independently of contextual terminology.

Description of columns

This section details the meaning of the columns in the table below.

Solvers

These columns are about the algorithms used to solve the linear system defined by the prior covariance matrix, i.e. the matrix built by evaluating the kernel.

  • Exact: whether generic exact algorithms are implemented. These algorithms are usually appropriate only up to some thousands of datapoints.
  • Specialized: whether specialized exact algorithms for specific classes of problems are implemented. Supported specialized algorithms may be indicated as:
    • Kronecker: algorithms for separable kernels on grid data.[1]
    • Toeplitz: algorithms for stationary kernels on uniformly spaced data.[2]
    • Semisep.: algorithms for semiseparable covariance matrices.[3]
    • Sparse: algorithms optimized for sparse covariance matrices.
    • Block: algorithms optimized for block diagonal covariance matrices.
  • Approximate: whether generic or specialized approximate algorithms are implemented. Supported approximate algorithms may be indicated as:
    • Sparse: algorithms based on choosing a set of "inducing points" in input space.[4]
    • Hierarchical: algorithms which approximate the covariance matrix with a hierarchical matrix.[5]

Input

These columns are about the points on which the Gaussian process is evaluated, i.e. if the process is .

  • ND: whether multidimensional input is supported. If it is, multidimensional output is always possible by adding a dimension to the input, even without direct support.
  • Non-real: whether arbitrary non-real input is supported (for example, text or complex numbers).

Output

These columns are about the values yielded by the process, and how they are connected to the data used in the fit.

  • Likelihood: whether arbitrary non-Gaussian likelihoods are supported.
  • Errors: whether arbitrary non-uniform correlated errors on datapoints are supported for the Gaussian likelihood. Errors may be handled manually by adding a kernel component, this column is about the possibility of manipulating them separately. Partial error support may be indicated as:
    • iid: the datapoints must be independent and identically distributed.
    • Uncorrelated: the datapoints must be independent, but can have different distributions.
    • Stationary: the datapoints can be correlated, but the covariance matrix must be a Toeplitz matrix, in particular this implies that the variances must be uniform.

Hyperparameters

These columns are about finding values of variables which enter somehow in the definition of the specific problem but that can not be inferred by the Gaussian process fit, for example parameters in the formula of the kernel.

  • Prior: whether specifying arbitrary hyperpriors on the hyperparameters is supported.
  • Posterior: whether estimating the posterior is supported beyond point estimation, possibly in conjunction with other software.

If both the "Prior" and "Posterior" cells contain "Manually", the software provides an interface for computing the marginal likelihood and its gradient w.r.t hyperparameters, which can be feed into an optimization/sampling algorithm, e.g. gradient descent or Markov chain Monte Carlo.

Linear transformations

These columns are about the possibility of fitting datapoints simultaneously to a process and to linear transformations of it.

  • Deriv.: whether it is possible to take an arbitrary number of derivatives up to the maximum allowed by the smoothness of the kernel, for any differentiable kernel. Example partial specifications may be the maximum derivability or implementation only for some kernels. Integrals can be obtained indirectly from derivatives.
  • Finite: whether finite arbitrary linear transformations are allowed on the specified datapoints.
  • Sum: whether it is possible to sum various kernels and access separately the processes corresponding to each addend. It is a particular case of finite linear transformation but it is listed separately because it is a common feature.

Comparison table

Name License Language Solvers Input Output Hyperparameters Linear transformations Name
Exact Specialized Approximate ND Non-real Likelihood Errors Prior Posterior Deriv. Finite Sum
PyMC3 Apache Python Yes Kronecker Sparse ND No Any Correlated Yes Yes No Yes Yes PyMC3
GPvecchia GNU GPL R Yes No Sparse, Hierarchical No No Exponential family Correlated No No No Yes Yes GPvecchia
GpGp MIT R No No Sparse ND No Gaussian Correlated Yes Yes No Yes Yes GpGp
GPy[6] BSD Python Yes No Sparse ND No Many Uncorrelated Yes Yes No No No GPy
pyGPs[7] BSD Python Yes No Sparse ND Graphs, Manually Bernoulli iid Manually Manually No No No pyGPs
Stan BSD, GPL custom Yes No No ND No Any Correlated Yes Yes No Yes Yes Stan
GPyTorch[8] MIT Python Yes No Sparse ND No Bernoulli No First RBF GPyTorch
GPML[9][10] BSD MATLAB Yes No Sparse ND No Many iid Manually Manually No No No GPML
fbm[10] Free C Yes No No ND No Bernoulli, Poisson Uncorrelated, Stationary Many Yes No fbm
gptk BSD R Yes Block? Sparse ND No Gaussian No Manually Manually No No No gptk
SuperGauss GNU GPL R, C++ No Toeplitz[lower-alpha 1] No 1D No Gaussian No Manually Manually No No No SuperGauss
celerite[3] MIT Python, Julia, C++ No Semisep.[lower-alpha 2] No 1D No Gaussian Uncorrelated Manually Manually No No celerite
george MIT Python, C++ Yes No Hierarchical ND No Gaussian Uncorrelated Manually Manually No No Manually george
neural-tangents[11][lower-alpha 3] Apache Python Yes Block, Kronecker No No Gaussian No No No No No No neural-tangents
STK GNU GPL MATLAB Yes No No ND No Gaussian Uncorrelated Manually Manually No No Manually STK
UQLab[12] Proprietary MATLAB UQLab
ooDACE[13] Proprietary MATLAB ND No ooDACE
GPstuff[10] GNU GPL MATLAB, R Yes No Sparse ND No Many Many Yes First RBF GPstuff
GSTools GNU LGPL Python Yes No No ND No Gaussian No No No No No No GSTools
GPR Apache C++ Yes No Sparse ND No Gaussian iid Some, Manually Manually First No No GPR
scikit-learn BSD Python Yes No No 1D No Bernoulli scikit-learn
PyKrige BSD Python 2D,3D No PyKrige
GPflow[6] Apache Python Yes No Sparse Many Yes Yes GPflow
Name License Language Exact Specialized Approximate ND Non-real Likelihood Errors Prior Posterior Deriv. Finite Sum Name
Solvers Input Output Hyperparameters Linear transformations

Notes

  1. SuperGauss implements a superfast Toeplitz solver with computational complexity .
  2. celerite implements only a specific subalgebra of kernels which can be solved in .[3]
  3. neural-tangents is a specialized package for infinitely wide neural networks.
gollark: It's FP and OOP hybridized somewhat (`FOOP` or `FOOPy`).
gollark: "Composition".
gollark: Alternatively, sticking that information onto a type and then sticking that type in as a field on some other type.
gollark: Not being stupid.
gollark: Yes... the evil Global Interpreter Lock.

References

  1. P. Cunningham, John; Gilboa, Elad; Saatçi, Yunus (Feb 2015). "Scaling Multidimensional Inference for Structured Gaussian Processes". IEEE Transactions on Pattern Analysis and Machine Intelligence. 37 (2): 424–436. doi:10.1109/TPAMI.2013.192. PMID 26353252. S2CID 6878550.
  2. Leith, D. J.; Zhang, Yunong; Leithead, W. E. (2005). "Time-series Gaussian Process Regression Based on Toeplitz Computation of O(N2) Operations and O(N)-level Storage". Proceedings of the 44th IEEE Conference on Decision and Control: 3711–3716. doi:10.1109/CDC.2005.1582739. S2CID 13627455.
  3. Foreman-Mackey, Daniel; Angus, Ruth; Agol, Eric; Ambikasaran, Sivaram (9 November 2017). "Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series". The Astronomical Journal. 154 (6): 220. arXiv:1703.09710. Bibcode:2017AJ....154..220F. doi:10.3847/1538-3881/aa9332. S2CID 88521913.
  4. Quiñonero-Candela, Joaquin; Rasmussen, Carl Edward (5 December 2005). "A Unifying View of Sparse Approximate Gaussian Process Regression". Journal of Machine Learning Research. 6: 1939–1959. Retrieved 23 May 2020.
  5. Ambikasaran, S.; Foreman-Mackey, D.; Greengard, L.; Hogg, D. W.; O’Neil, M. (1 Feb 2016). "Fast Direct Methods for Gaussian Processes". IEEE Transactions on Pattern Analysis and Machine Intelligence. 38 (2): 252–265. arXiv:1403.6015. doi:10.1109/TPAMI.2015.2448083. PMID 26761732. S2CID 15206293.
  6. Matthews, Alexander G. de G.; van der Wilk, Mark; Nickson, Tom; Fujii, Keisuke; Boukouvalas, Alexis; León-Villagrá, Pablo; Ghahramani, Zoubin; Hensman, James (April 2017). "GPflow: A Gaussian process library using TensorFlow". Journal of Machine Learning Research. 18 (40): 1–6. arXiv:1610.08733. Retrieved 6 July 2020.
  7. Neumann, Marion; Huang, Shan; E. Marthaler, Daniel; Kersting, Kristian (2015). "pyGPs -- A Python Library for Gaussian Process Regression and Classification". Journal of Machine Learning Research. 16: 2611–2616.
  8. Gardner, Jacob R; Pleiss, Geoff; Bindel, David; Weinberger, Kilian Q; Wilson, Andrew Gordon (2018). "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration" (PDF). Advances in Neural Information Processing Systems. 31: 7576–7586. arXiv:1809.11165. Retrieved 23 May 2020.
  9. Rasmussen, Carl Edward; Nickisch, Hannes (Nov 2010). "Gaussian processes for machine learning (GPML) toolbox". Journal of Machine Learning Research. 11: 3011–3015. doi:10.1016/0002-9610(74)90157-3. PMID 4204594.
  10. Vanhatalo, Jarno; Riihimäki, Jaakko; Hartikainen, Jouni; Jylänki, Pasi; Tolvanen, Ville; Vehtari, Aki (Apr 2013). "GPstuff: Bayesian Modeling with Gaussian Processes". Journal of Machine Learning Research. 14: 1175−1179. Retrieved 23 May 2020.
  11. Novak, Roman; Xiao, Lechao; Hron, Jiri; Lee, Jaehoon; Alemi, Alexander A.; Sohl-Dickstein, Jascha; Schoenholz, Samuel S. (2020). "Neural Tangents: Fast and Easy Infinite Neural Networks in Python". International Conference on Learning Representations. arXiv:1912.02803.
  12. Marelli, Stefano; Sudret, Bruno (2014). "UQLab: a framework for uncertainty quantification in MATLAB" (PDF). Vulnerability, Uncertainty, and Risk. Quantification, Mitigation, and Management: 2554–2563. doi:10.3929/ethz-a-010238238. Retrieved 28 May 2020.
  13. Couckuyt, Ivo; Dhaene, Tom; Demeester, Piet (2014). "ooDACE toolbox: a flexible object-oriented Kriging implementation" (PDF). Journal of Machine Learning Research. 15: 3183–3186. Retrieved 8 July 2020.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.