Commutant lifting theorem

In operator theory, the commutant lifting theorem, due to Sz.-Nagy and Foias, is a powerful theorem used to prove several interpolation results.

Statement

The commutant lifting theorem states that if T is a contraction on a Hilbert space H, U is its minimal unitary dilation acting on some Hilbert space K (which can be shown to exist by Sz.-Nagy's dilation theorem), and R is an operator on H commuting with T, then there is an operator S on K commuting with U such that

and

In other words, an operator from the commutant of T can be "lifted" to an operator in the commutant of the unitary dilation of T.

Applications

The commutant lifting theorem can be used to prove the left Nevanlinna-Pick interpolation theorem, the Sarason interpolation theorem, and the two-sided Nudelman theorem, among others.

gollark: I wouldn't actually need decoding in this case.
gollark: I was looking for a JS version but a Python one should be portable.
gollark: Maybe some sort of thing with Hilbert whatsits...
gollark: ★!
gollark: I mean... maybe a similar one with the nice square patterns but not as fixed...

References

  • Vern Paulsen, Completely Bounded Maps and Operator Algebras 2002, ISBN 0-521-81669-6
  • B Sz.-Nagy and C. Foias, "The "Lifting theorem" for intertwining operators and some new applications", Indiana Univ. Math. J 20 (1971): 901-904
  • Foiaş, Ciprian, ed. Metric Constrained Interpolation, Commutant Lifting, and Systems. Vol. 100. Springer, 1998.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.