Cladosporium oxysporum

Cladosporium oxysporum is an airborne fungus that is commonly found outdoors and is distributed throughout the tropical and subtropical region, it is mostly located In Asia and Africa.[1][2] It spreads through airborne spores and is often extremely abundant in outdoor air during the spring and summer seasons.[3] It mainly feeds on decomposing organic matter in warmer climates,[4][5] but can also be parasitic and feed on living plants.[1] The airborne spores can occasionally cause cutaneous infections in humans,[4] and the high prevalence of C. oxysporum in outdoor air during warm seasons contributes to its importance as an etiological agent of allergic disease and possibly human cutaneous phaeohyphomycosis in tropical regions.[6][7]

Cladosporium oxysporum
Scientific classification
Kingdom:
Division:
Subdivision:
Class:
Order:
Genus:
Species:
Cladosporium oxysporum
Binomial name
Cladosporium oxysporum
Synonyms
  • Cladosporium subtile
    Rabenhort (1876)

History and taxonomy

This species was described by Reverend Miles Joseph Berkeley and Moses Ashley Curtis in 1868 in the Botanical Journal of the Linnean Society.[8]

Growth and morphology

Cladosporium oxysporum expands moderately, often floccose at the center of the fungus that consists of woolly tufts, and it can grow up to 650 μm long and 4-5 μm wide.[4] The colony is colored olive to olive-green on top with velvety surface, and greenish black at the bottom.[4] The conidiophores are either straight or slightly bent,[4] and the conidia range from oval to lemon-shaped.[9] C. oxysporum produces conidia in unbranched or branched chains arising from cylindrical base cells.[5] After the first spores have formed on the conidiophore, they bud apically to form secondary spores.[10] They have pores connected in very fragile chains that can fall apart at the slightest movement of air,[11] the spores are wind-dispersed and often extremely abundant in outdoor air under warm temperature.[3]

Habitat and ecology

Cladosporium oxysporum is mostly located Asia and Africa,[2] but it can also be found distributed throughout tropical and the subtropical regions.[1] The fungus is commonly found on dead herbaceous and woody plants in the tropics[5] as they are sapotrophs in warmer climates.[4] In general, most Cladosporium species are widely distributed throughout the world In tropical and subtropical regions, and growing In soil or on organic matters.[7] In a study conducted by Guan Et al., C. oxysporum was found to produce extracellular xylanase when grown on decaying agricultural waste.[12] Production of extracellular xylanase was enhanced by elevated levels of Mg2+ ion in the soil or the surrounding environment, but inhibited by the high levels of Cu2+ ion.[12] In the wild, C. oxysporum grows on hosts like Alnus, Bambusa, Citrus, Helianthus, and Pseudotsuga.[1]

Physiology

C. oxysporum is a saprobic secondary invader in warmer climates,[4] meaning they invade and feed on organisms that are weakened or already dead. It breaks down cellulose from dead herbaceous or plants, which is then further turned into glucose to Be used by the fungi themselves,[11] and it uses NH4Cl as a nitrogen source.[12] In a study by Oxenbøll et al., C. oxysporum catalyzed glucose oxidation by producing glucose oxidase,[13] which it is mentioned in another study conducted by Viswanathan Et al. that the glucose oxidase helped protect against bacterial infection on the surface of fungi.[14] The organism is also proven to be very osmotolerant in a laboratory environment, meaning it can tolerate extreme changes in water availability.[3] C. oxysporum can be easily grown on agar media containing 10% glucose or 12 – 17% NaCl, they rarely grow on media containing 24% NaCl or 50% glucose and never isolated from media containing 32% NaCl or greater.[3] C. oxysporum exhibits high metal tolerance, allowing it to survive well in contaminated soil.[15]

Pathogenicity

Effects on humans

Cladosporium oxysporum is a low-risk microbe that usually poses little to No threat of infection In healthy adults As it has a Biosafety level of 1(BSL-1).[4] However, there have been rare reports of this fungus causing infection in humans. Only a handful of other species in the Cladosporium genera contributed to human infections, including C. cladosporioides, C. herbarum, C. sphaerospermum, and C. elatum.[7][16] Although it is a rare cause of disease in humans, C. oxysporum has been reported as a cause of keratitis and cutaneous infections.[4][17] A study by Forster et al. reported on 16 cases of keratitis caused by C. oxysporum in which 9 patients were healed by the use of Natamycin (Pimaricin), suggesting that the damage caused by this fungus was reversible. It is also reported that C. oxysporum can also cause occasional cutaneous phaeohyphomycosis and invasion of the neck lymph nodes in humans.[16][6] Several genera of fungi are found to cause phaeohyphomycosis, but it is a rare case caused by C. oxysporum.[7] In a 2006 case report, a 30-year-old farmer in India was affected by phaeohyphomycosis due to the infection of C. oxysporum which caused large areas of lesion on the skin. It was also tested that phaeohyphomycosis occurred after implanting the fungus from the environment to exposed tissue. The patient was responded positively after receiving a treatment of saturated solution of potassium iodide (SSKI), showing dramatic regression of lesions within 3 weeks of the onset of therapy.[7]

Effects on insects

In a study conducted by Samways Et al. In South Africa in 1986, C. oxysporum was observed to cause mortality In certain species of homoptera, suggesting that it can be used as a potential targeted insecticide. The pathogen was grown in submerged culture and then applied to 4 species of insects: Planococcus citri, Pseudococcus longispinus, Pulvinaria aethiopica and Trioza erytreae. C. oxysporum successfully caused mortality and hyphal growth In all four species. Field applications of the fungus had a considerable initial impact on the insect populations, which made it a potential biocontrol agent.[18]

Effects on mice

In an experiment conducted in India in 1992 by Singh et al., an in vivo experiment was conducted on mice to determine the pathogenicity of C. oxysporum. No mortality occurred during the four-week period of the experiment, but the concentration of the microorganism inside of the body increased tremendously. The lungs were the most commonly infected organ As they presented with multiple nodules that had extensively invaded the endothelium of the bronchioles, and the surrounding tissues were heavily infiltrated with polymorphonuclear leucocytes.[19]

Effects on plants

It is also found in multiple studies suggesting that C. oxysporum is pathogenic to many vegetables and fruits. A study performed by Lamboy et al. studied the pathogenic effects of C. oxysporum to tomatoes.[9] The fungus creates dark brown, angular lesions on the tomato foliage known as "leaf spots", ultimately reducing the ability for the plant to survive.[9] The study also describes C. oxysporum as a causal agent of a leaf spot disease of pepper and also a storage disease of ripe tomato fruit.[9] Due to the high prevalence of this fungi in warm climax, they reproduce extremely well in a green house setting, which they were able to spread to healthy tomato plants in vicinity within three weeks.[9] Other studies also provided insight on the pathogenic effect of C. oxysporum on other vegetation; it causes the formation of scabs on the surface of passion-fruits,[20] and it also causes severe leaf blight in Prunus napaulensis, especially affecting the seedlings.[21]

Treatment

In a study performed by Raj et al., the fungal metabolite, taxol, extracted from Cladosporium oxysporum induced apoptosis in T47D human breast cancer cell line, which suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, and down-regulating the expression of NF-B, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3.[22] This discovery allowed the medical field to test a new substance to study the ongoing battle with cancer. In another study, fungal taxol extracted from C. oxysporum can Be used against human pathogenic bacteria and human colon cancer cell line HCT 15.[23] The taxol extracted could suppress the growth of the cancer cells As well as effectively combating both gram positive and gram negative bacteria.

Uses

It is proposed that C. oxysporum has a potential function in textile processes or paper/feed industries due to the xylanase resistance to most of tested neutral and alkaline proteases, meaning that xylanase would not be broken down by other protease, which allows it to continuously break down fiber into paper-making materials.[12] C. oxysporum can also be used to make tempeh; traditional soy product originating from Indonesia.[24] In multiple studies, C. oxysporum has been used in bioremediation. water bioremediation by targeting endosulfan[25] and it exhibits metal tolerance and an ability to synthesize gold nanoparticles with superior catalytic activity for degradation of rhodamine B.[15]

gollark: AutoBotRobot is disabled for Ł®K.
gollark: ++exec```python1print "Reddit"```
gollark: Great, I now have to rewritinate all the parsing logic.
gollark: Um... no?
gollark: WARNING 17:57:10 22/06/2019 Heartbeat blocked for more than 5 seconds.^C^C^C^C^C^C^CWARNING 17:57:15 22/06/2019 Heartbeat blocked for more than 10 seconds

References

  1. Farr, David F.; Bills, Gerald F.; Chamuris, George P.; Rossman, Amy Y. (1989). Fungi on Plants and Plant Products In the United States (2Nd ed.). St. Paul, Minn.: APS Press. p. 1252. ISBN 978-0890540992.
  2. "Cladosporium oxysporum (seedlings blight of passion fruit)". www.cabi.org.
  3. Rai, Mahendra (2005). Biodiversity of fungi : their role in human life. Science Publishers. ISBN 9781578083688.
  4. de Hoog, G. S; Guarro, J; Gené, J; Figueras, M. J (2000). Atlas of clinical fungi (2Nd ed.). Centraalbureau voor Schimmelcultures. ISBN 978-90-70351-43-4.
  5. Ellis, M. B (1971). Dematiaceous Hyphomycetes. Kew, Surrey, England: Commonwealth Mycology Institute.
  6. Romano, C.; Bilenchi, R.; Alessandrini, C.; Miracco, C. (January 1999). "Case Report. Cutaneous phaeohyphomycosis caused by Cladosporium oxysporum". Mycoses. 42 (1–2): 111–115. doi:10.1046/j.1439-0507.1999.00263.x. ISSN 0933-7407. PMID 10394859.
  7. Gugnani, H. C.; Ramesh, V.; Sood, N.; Guarro, J.; Paliwal-Joshi, A.; Singh, B.; Makkar, R. (January 2006). abstract/44/3/285/970347 "Cutaneous phaeohyphomycosis caused byCladosporium oxysporumand its treatment with potassium iodide". Medical Mycology. 44 (3): 285–288. doi:10.1080/13693780500294824. ISSN 1369-3786. PMID 16830425.
  8. Berkeley, M. J; Curtis, M. A (1869). "Fungi Cubenses (Hymenomycetes)". Journal of the Linnean Society. 10 (45): 280–392. doi:10.1111/j.1095-8339.1868.tb00529.x.
  9. Lamboy, J. S.; Dillard, H. R. (February 1997). "First Report of a Leaf Spot Caused by Cladosporium oxysporum on Greenhouse Tomato". Plant Disease. 81 (2): 228. doi:10.1094/pdis.1997.81.2.228d. ISSN 0191-2917. PMID 30870909.
  10. Skinner, C. E; Emmons, C. W; Tsughiya, H. M (1951). Molds, Yeasts, and Actinomycetes. p. 111.
  11. Malloch, D (1981). Moulds: their isolation, cultivation, and identification. University of Toronto Press. ISBN 978-0-8020-2418-3.
  12. Guan, Guo-Qiang; Zhao, Peng-Xiang; Zhao, Jin; Wang, Mei-Juan; Huo, Shu-Hao; Cui, Feng-Jie; Jiang, Jian-Xin (2016). "Production and Partial Characterization of an Alkaline Xylanase from a Novel Fungus Cladosporium oxysporum". BioMed Research International. 2016: 4575024. doi:10.1155/2016/4575024. ISSN 2314-6133. PMC 4861788. PMID 27213150.
  13. Oxenbøll, K; Si, J. Q; Aagaard, J (3 May 1995). "Alkaline glucose oxidase obtained from Cladosporium oxysporum". US Grant.
  14. Viswanathan, Sowmya; Li, Pingzuo; Choi, Wonbong; Filipek, Slawomir; Balasubramaniam, T. A.; Renugopalakrishnan, V. (1 January 2012). Protein – Carbon Nanotube Sensors: Single Platform Integrated Micro Clinical Lab for Monitoring Blood Analytes. Methods in Enzymology. 509. pp. 165–194. doi:10.1016/B978-0-12-391858-1.00010-1. ISBN 9780123918581. ISSN 0076-6879. PMID 22568906.
  15. Bhargava, Arpit; Jain, Navin; Khan, Mohd Azeem; Pareek, Vikram; Dilip, R. Venkataramana; Panwar, Jitendra (2016-12-01). "Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B". Journal of Environmental Management. 183: 22–32. doi:10.1016/j.jenvman.2016.08.021. ISSN 1095-8630. PMID 27567934.
  16. Jayasinghe, R. D.; Abeysinghe, W. A. M. U. L.; Jayasekara, P. I.; Mohomed, Y. S.; Siriwardena, B. S. M. S. (2017). "Unilateral Cervical Lymphadenopathy due to Cladosporium oxysporum: A Case Report and Review of the Literature". Case Reports in Pathology. 2017: 5036514. doi:10.1155/2017/5036514. PMC 5676383. PMID 29209546.
  17. Forster, R. K.; Rebell, G.; Wilson, L. A. (1975). 1042642/ "Dematiaceous fungal keratitis. Clinical isolates and management". The British Journal of Ophthalmology. 59 (7): 372–376. doi:10.1136/bjo.59.7.372. ISSN 0007-1161. PMC 1042642. PMID 1081406.
  18. Samways, M. J.; Grech, N. M. (1986). "Assessment of the fungus Cladosporium oxysporum (Berk. and Curt.) As a potential biocontrol agent against certain Homoptera". Agriculture, Ecosystems and Environment. 15 (4): 231–239. doi:10.1016/0167-8809(86)90122-2.
  19. Singh, Shanker Mohan; Singh, Mridula; Mukherjee, Shirshendu (March 1992). "Pathogenicity of Sporotrichum pruinosum and Cladosporium oxysporum, isolated from the bronchial secretions of a patient, for laboratory mice". Mycopathologia. 117 (3): 145–152. doi:10.1007/bf00442775. ISSN 0301-486X. PMID 1640976.
  20. Willingham, S. L.; Pegg, K. G.; Langdon, P. W. B.; Cooke, A. W.; Peasley, D.; McLennan, R. (2002). "Combinations of strobilurin fungicides and acibenzolar (Bion) to reduce scab on passionfruit caused by Cladosporium oxysporum". Australasian Plant Pathology. 31 (4): 333. doi:10.1071/ap02036. ISSN 0815-3191.
  21. Baiswar, P.; Chandra, S.; Bag, T. K.; Ngachan, S. V.; Deka, B. C. (2011). "Cladosporium oxysporum on Prunus nepalensis In India". Australasian Plant Disease Notes. 6 (1): 3–6. doi:10.1007/S13314-011-0002-1. ISSN 1833-928X.
  22. Raj, Kathamuthu Gokul; Sambantham, Shanmugam; Manikanadan, Ramar; Arulvasu, Chinnansamy; Pandi, Mohan (2014). "Fungal taxol extracted from Cladosporium oxysporum induces apoptosis in T47D human breast cancer cell line". Asian Pacific Journal of Cancer Prevention. 15 (16): 6627–6632. doi:10.7314/apjcp.2014.15.16.6627. ISSN 2476-762X. PMID 25169499.
  23. Gokul Raj, K; Manikandan, R; Pandi, M (5 March 2015). "Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 138: 667–674. Bibcode:2015AcSpA.138..667G. doi:10.1016/j.saa.2014.11.036. ISSN 1386-1425. PMID 25544183.
  24. Shurtleff, William; Aoyahi, Akiko (2011). History of fermented tofu : a healthy nondairy / vegan cheese (1610-2011) : extensively annotated bibliography and sourcebook. Soyinfo Center. ISBN 9781928914402.
  25. Mukherjee, I.; Mittal, A. (November 2005). "Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum". Bulletin of Environmental Contamination and Toxicology. 75 (5): 1034–1040. doi:10.1007/S00128-005-0853-2. ISSN 0007-4861. PMID 16400595.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.