Chow variety
In mathematics, and more particularly in the field of algebraic geometry, Chow coordinates are a generalization of Plücker coordinates, applying to m-dimensional algebraic varieties of degree d in , that is, n-dimensional projective space. They are named for Wei-Liang Chow.
A Chow variety is a variety whose points correspond to all cycles of a given projective space of given dimension and degree.
Definition
To define the Chow coordinates, take the intersection of an algebraic variety Z, inside a projective space, of degree d and dimension m by linear subspaces U of codimension m. When U is in general position, the intersection will be a finite set of d distinct points.
Then the coordinates of the d points of intersection are algebraic functions of the Plücker coordinates of U, and by taking a symmetric function of the algebraic functions, a homogeneous polynomial known as the Chow form (or Cayley form) of Z is obtained.
The Chow coordinates are then the coefficients of the Chow form. Chow coordinates can generate the smallest field of definition of a divisor. The Chow coordinates define a point in the projective space corresponding to all forms.
The closure of the possible Chow coordinates is called the Chow variety.
Relation to Hilbert scheme
The Hilbert scheme is a variant of the Chow varieties. There is always a map (called the cycle map)
from the Hilbert scheme to the Chow variety.
Chow quotient
A Chow quotient parametrizes closures of generic orbits. It is constructed as a closed subvariety of a Chow variety.
Kapranov's theorem says that the moduli space of stable genus-zero curves with n marked points is the Chow quotient of Grassmannian by the standard maximal torus.
See also
- Picard variety
- GIT quotient
References
- Chow, W.-L.; van der Waerden, B. L. (1937), "Zur algebraische Geometrie IX.", Mathematische Annalen, 113: 692–704, doi:10.1007/BF01571660
- Hodge, W. V. D.; Pedoe, Daniel (1994) [1947]. Methods of Algebraic Geometry, Volume I (Book II). Cambridge University Press. ISBN 978-0-521-46900-5. MR 0028055.
- Hodge, W. V. D.; Pedoe, Daniel (1994) [1952]. Methods of Algebraic Geometry: Volume 2 Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties. Cambridge Mathematical Library. Cambridge University Press. ISBN 978-0-521-46901-2. MR 0048065.
- Mikhail Kapranov, Chow quotients of Grassmannian, I.M. Gelfand Seminar Collection, 29–110, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993.
- Kollár, János (1996), Rational Curves on Algebraic Varieties, Berlin, Heidelberg: Springer-Verlag
- Kollár, János, "Chapter 1", Book on Moduli of Surfaces
- Kulikov, Val.S. (2001) [1994], "Chow variety", Encyclopedia of Mathematics, EMS Press
- Mumford, David; Fogarty, John; Kirwan, Frances (1994). Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. 34 (3rd ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-56963-3. MR 1304906.