Center (ring theory)

In algebra, the center of a ring R is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center".

If R is a ring, then R is an associative algebra over its center. Conversely, if R is an associative algebra over a commutative subring S, then S is a subring of the center of R, and if S happens to be the center of R, then the algebra R is called a central algebra.

Examples

gollark: How strange.
gollark: They should also invest in foreign currencies or something, I guess.
gollark: Idea: buy raw materials and make counterfeit coins! What COULD go wrong.
gollark: Plus you get much more of them.
gollark: Hmm. Perhaps.

See also

Notes

References

  • Bourbaki, Algebra.
  • Richard S. Pierce. Associative algebras. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, ISBN 978-0-387-90693-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.