Cauchy's equation

In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who defined it in 1836.

Refractive index vs. wavelength for BK7 glass. Red crosses show measured values. Over the visible region (red shading), Cauchy's equation (blue line) agrees well with the measured refractive indices and the Sellmeier plot (green dashed line). It deviates in the ultraviolet and infrared regions.

The equation

The most general form of Cauchy's equation is

where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres.

Usually, it is sufficient to use a two-term form of the equation:

where the coefficients A and B are determined specifically for this form of the equation.

A table of coefficients for common optical materials is shown below:

MaterialAB (μm2)
Fused silica1.45800.00354
Borosilicate glass BK71.50460.00420
Hard crown glass K51.52200.00459
Barium crown glass BaK41.56900.00531
Barium flint glass BaF101.67000.00743
Dense flint glass SF101.72800.01342

The theory of light-matter interaction on which Cauchy based this equation was later found to be incorrect. In particular, the equation is only valid for regions of normal dispersion in the visible wavelength region. In the infrared, the equation becomes inaccurate, and it cannot represent regions of anomalous dispersion. Despite this, its mathematical simplicity makes it useful in some applications.

The Sellmeier equation is a later development of Cauchy's work that handles anomalously dispersive regions, and more accurately models a material's refractive index across the ultraviolet, visible, and infrared spectrum.

gollark: They were not, probably.
gollark: ↑]
gollark: As I said, there are a lot of other groups with different requirements.
gollark: So, regardless of whether you think rural people are favoured, why *should* they be?
gollark: I see.

References

  • F.A. Jenkins and H.E. White, Fundamentals of Optics, 4th ed., McGraw-Hill, Inc. (1981).

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.