Calabi–Eckmann manifold

In complex geometry, a part of mathematics, a Calabi–Eckmann manifold (or, often, Calabi–Eckmann space), named after Eugenio Calabi and Beno Eckmann, is a complex, homogeneous, non-Kähler manifold, homeomorphic to a product of two odd-dimensional spheres of dimension ≥ 3.

The Calabi–Eckmann manifold is constructed as follows. Consider the space , where , equipped with an action of the group :

where is a fixed complex number. It is easy to check that this action is free and proper, and the corresponding orbit space M is homeomorphic to . Since M is a quotient space of a holomorphic action, it is also a complex manifold. It is obviously homogeneous, with a transitive holomorphic action of

A Calabi–Eckmann manifold M is non-Kähler, because . It is the simplest example of a non-Kähler manifold which is simply connected (in dimension 2, all simply connected compact complex manifolds are Kähler).

The natural projection

induces a holomorphic map from the corresponding Calabi–Eckmann manifold M to . The fiber of this map is an elliptic curve T, obtained as a quotient of by the lattice . This makes M into a principal T-bundle.

Calabi and Eckmann discovered these manifolds in 1953.[1]

Notes

  1. Calabi, Eugenio; Eckmann, Benno (1953), "A class of compact complex manifolds which are not algebraic", Annals of Mathematics, 58: 494–500
gollark: I don't know much about old CC versions but they're generally backward-compatible for programs.
gollark: Oh dear, that looks like a CC internal problem.
gollark: <@215232595070418944> If you want it to work on older versions, it may just let you specify the host header if you use the other form which allows adding custom headers.
gollark: Although maybe it would be better to make it automatically turn on when the buffer empties a bit.
gollark: I'm not sure how you got that from "prioritize a function" but, er, just make it wait for a touch event on the screen after shutting it down, I suppose.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.