Borel isomorphism

In mathematics, a Borel isomorphism is a measurable bijective function between two measurable standard Borel spaces. By Souslin's theorem in standard Borel spaces (a set that is both analytic and coanalytic is necessarily Borel), the inverse of any such measurable bijective function is also measurable. Borel isomorphisms are closed under composition and under taking of inverses. The set of Borel isomorphisms from a space to itself clearly forms a group under composition. Borel isomorphisms on standard Borel spaces are analogous to homeomorphisms on topological spaces: both are bijective and closed under composition, and a homeomorphism and its inverse are both continuous, instead of both being only Borel measurable.

Borel space

A measurable space that is Borel isomorphic to a measurable subset of the real numbers is called a Borel space.[1]

gollark: Your undefine actually contained a zero width space.
gollark: You can't break backward compatibility.
gollark: Remember, this sort of game is far too complicated for humans to ever devise good strategies.
gollark: Just use deep learning™™™.
gollark: Just use macrons to make it work.

See also

References

  1. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. p. 15. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.