Bochner's formula

In mathematics, Bochner's formula is a statement relating harmonic functions on a Riemannian manifold to the Ricci curvature. The formula is named after the American mathematician Salomon Bochner.

Formal statement

If is a smooth function, then

,

where is the gradient of with respect to and is the Ricci curvature tensor.[1] If is harmonic (i.e., , where is the Laplacian with respect to the metric ), Bochner's formula becomes

.

Bochner used this formula to prove the Bochner vanishing theorem.

As a corollary, if is a Riemannian manifold without boundary and is a smooth, compactly supported function, then

.

This immediately follows from the first identity, observing that the integral of the left-hand side vanishes (by the divergence theorem) and integrating by parts the first term on the right-hand side.

Variations and generalizations

gollark: Plethora used to have an actual cost system. I may be partly behind squid removing that.
gollark: One got a sign materialized on it saying "this is downloading lots of data please stop it - SquidDev", one got put in a chest with a sign saying "HELP HELP THIS IS SPAMMING THE CONSOLE - 3d6", one got a sign saying "this causes lag, use setRaw - Lr_".
gollark: I got roughly that done to THREE computers!
gollark: SC admins: orbital laser strike initiated.
gollark: Fake loading screens are the enemy of mankind.

References

  1. Chow, Bennett; Lu, Peng; Ni, Lei (2006), Hamilton's Ricci flow, Graduate Studies in Mathematics, 77, Providence, RI: Science Press, New York, p. 19, ISBN 978-0-8218-4231-7, MR 2274812.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.