Björling problem
In differential geometry, the Björling problem is the problem of finding a minimal surface passing through a given curve with prescribed normal (or tangent planes). The problem was posed and solved by Swedish mathematician Emanuel Gabriel Björling,[1] with further refinement by Hermann Schwarz.[2]
The problem can be solved by extending the surface from the curve using complex analytic continuation. If is a real analytic curve in ℝ3 defined over an interval I, with and a vector field along c such that and , then the following surface is minimal:
where , , and is a simply connected domain where the interval is included and the power series expansions of and are convergent.[3]
A classic example is Catalan's minimal surface, which passes through a cycloid curve. Applying the method to a semicubical parabola produces the Henneberg surface, and to a circle (with a suitably twisted normal field) a minimal Möbius strip.[4]
A unique solution always exists. It can be viewed as a Cauchy problem for minimal surfaces, allowing one to find a surface if a geodesic, asymptote or lines of curvature is known. In particular, if the curve is planar and geodesic, then the plane of the curve will be a symmetry plane of the surface.[5]
References
- E.G. Björling, Arch. Grunert , IV (1844) pp. 290
- H.A. Schwarz, J. reine angew. Math. 80 280-300 1875
- Kai-Wing Fung, Minimal Surfaces as Isotropic Curves in C3: Associated minimal surfaces and the Björling's problem. MIT BA Thesis. 2004 http://ocw.mit.edu/courses/mathematics/18-994-seminar-in-geometry-fall-2004/projects/main1.pdf
- W.H. Meeks III (1981). "The classification of complete minimal surfaces in R3 with total curvature greater than ". Duke Math. J. 48 (3): 523–535. doi:10.1215/S0012-7094-81-04829-8. MR 0630583. Zbl 0472.53010.
- Björling problem. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Bj%C3%B6rling_problem&oldid=23196
External image galleries
- Björling Surfaces, at the Indiana Minimal Surface Archive: http://www.indiana.edu/~minimal/archive/Bjoerling/index.html