Binomial process

A binomial process is a special point process in probability theory.

Definition

Let be a probability distribution and be a fixed natural number. Let be i.i.d. random variables with distribution , so for all .

Then the binomial process based on n and P is the random measure

where

Properties

Name

The name of a binomial process is derived from the fact that for all measurable sets the random variable follows a binomial distribution with parameters and :

Laplace-transform

The Laplace transform of a binomial process is given by

for all positive measurable functions .

Intensity measure

The intensity measure of a binomial process is given by

Generalizations

A generalization of binomial processes are mixed binomial processes. In these point processes, the number of points is not deterministic like it is with binomial processes, but is determined by a random variable . Therefore mixed binomial processes conditioned on are binomial process based on and .

Literature

  • Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
gollark: In general. Radio telescopes are INCREASINGLY good.
gollark: We are perfectly able to notice weird radio things like pulsars.
gollark: You're wrong, actually.
gollark: If it's high-power enough someone will notice it.
gollark: That's the electrical engineers' problem.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.