Bergman–Weil formula

In mathematics, the Bergman–Weil formula is an integral representation for holomorphic functions of several variables generalizing the Cauchy integral formula. It was introduced by Bergman (1936) and Weil (1935).

Weil domains

A Weil domain (Weil 1935) is an analytic polyhedron with a domain U in Cn defined by inequalities fj(z) < 1 for functions fj that are holomorphic on some neighborhood of the closure of U, such that the faces of the Weil domain (where one of the functions is 1 and the others are less than 1) all have dimension 2n  1, and the intersections of k faces have codimension at least k.

gollark: It is too late, orbital mind control lasers *are* active.
gollark: Also the W3C markup validator finally shut up.
gollark: I fixed the embedding! https://osmarks.tk/p3.html
gollark: https://git.osmarks.tk/osmarks/potatOS & https://potatos.madefor.cc/
gollark: Ah, fixed it!

See also

References

  • Bergmann, S. (1936), "Über eine Integraldarstellung von Funktionen zweier komplexer Veränderlichen", Recueil Mathématique (Matematicheskii Sbornik) N.S. (in German), 1 (43) (6): 851–862, JFM 62.1220.04, Zbl 0016.17001.
  • Chirka, E.M. (2001) [1994], "Bergman–Weil representation", Encyclopedia of Mathematics, EMS Press
  • Shirinbekov, M. (2001) [1994], "Weil domain", Encyclopedia of Mathematics, EMS Press
  • Weil, André (1935), "L'intégrale de Cauchy et les fonctions de plusieurs variables", Mathematische Annalen, 111 (1): 178–182, doi:10.1007/BF01472212, ISSN 0025-5831, JFM 61.0371.03, MR 1512987, Zbl 0011.12301.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.