Berger–Kazdan comparison theorem
In mathematics, the Berger–Kazdan comparison theorem is a result in Riemannian geometry that gives a lower bound on the volume of a Riemannian manifold and also gives a necessary and sufficient condition for the manifold to be isometric to the m-dimensional sphere with its usual "round" metric. The theorem is named after the mathematicians Marcel Berger and Jerry Kazdan.
Statement of the theorem
Let (M, g) be a compact m-dimensional Riemannian manifold with injectivity radius inj(M). Let vol denote the volume form on M and let cm(r) denote the volume of the standard m-dimensional sphere of radius r. Then
with equality if and only if (M, g) is isometric to the m-sphere Sm with its usual round metric.
gollark: I only have one free slot.
gollark: Hmm... get/trade omen or just hunt in the normal cave...
gollark: Yay, a dino!
gollark: `metallic` is too like lunar heralds.
gollark: I don't think they realize that people who can hunt and get golds can get omens much more easily.
References
- Berger, Marcel; Kazdan, Jerry L. (1980). "A Sturm–Liouville inequality with applications to an isoperimetric inequality for volume in terms of injectivity radius, and to Wiedersehen manifolds". Proceedings of Second International Conference on General Inequalities, 1978. Birkhauser. pp. 367–377.
- Kodani, Shigeru (1988). "An Estimate on the Volume of Metric Balls". Kodai Mathematical Journal. 11 (2): 300–305. doi:10.2996/kmj/1138038881.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.