Askey–Gasper inequality
In mathematics, the Askey–Gasper inequality is an inequality for Jacobi polynomials proved by Richard Askey and George Gasper (1976) and used in the proof of the Bieberbach conjecture.
Statement
It states that if β ≥ 0, α + β ≥ −2, and −1 ≤ x ≤ 1 then
where
is a Jacobi polynomial.
The case when β = 0 can also be written as
In this form, with α a non-negative integer, the inequality was used by Louis de Branges in his proof of the Bieberbach conjecture.
Proof
Ekhad (1993) gave a short proof of this inequality, by combining the identity
with the Clausen inequality.
Generalizations
Gasper & Rahman (2004, 8.9) give some generalizations of the Askey–Gasper inequality to basic hypergeometric series.
gollark: https://xkcd.com/2355/
gollark: Also, I can't really visualize much more than simple coloured shapes, and can't visualize past memories as others apparently can.
gollark: I also seem to suffer the lack of autobiographical memory thing, in that I have real trouble remembering past events but am fine with random facts.
gollark: I don't think any system which converts the simple, easy alignment square into an alignment cube or tesseract will be popular.
gollark: I don't really have a problem with liking it, more randomly bringing up bits of it with no context or real purpose.
See also
References
- Askey, Richard; Gasper, George (1976), "Positive Jacobi polynomial sums. II", American Journal of Mathematics, 98 (3): 709–737, doi:10.2307/2373813, ISSN 0002-9327, JSTOR 2373813, MR 0430358
- Askey, Richard; Gasper, George (1986), "Inequalities for polynomials", in Baernstein, Albert; Drasin, David; Duren, Peter; Marden, Albert (eds.), The Bieberbach conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr., 21, Providence, R.I.: American Mathematical Society, pp. 7–32, ISBN 978-0-8218-1521-2, MR 0875228
- Ekhad, Shalosh B. (1993), Delest, M.; Jacob, G.; Leroux, P. (eds.), "A short, elementary, and easy, WZ proof of the Askey-Gasper inequality that was used by de Branges in his proof of the Bieberbach conjecture", Theoretical Computer Science, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991), 117 (1): 199–202, doi:10.1016/0304-3975(93)90313-I, ISSN 0304-3975, MR 1235178
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.