Antanartia borbonica

Antanartia borbonica is a butterfly in the family Nymphalidae. It is found on Mauritius and La Réunion. Records for Madagascar are in error.[2]

Antanartia borbonica
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Nymphalidae
Genus: Antanartia
Species:
A. borbonica
Binomial name
Antanartia borbonica
(Oberthür, 1879)[1]
Synonyms
  • Vanessa borbonica Oberthür, 1879
  • Antanartia hippomene mauritiana Manders, 1908

Adults are on wing from September to May but it is commonest in February and March.

The larvae feed on Pilea urticefolia.

Subspecies

  • Antanartia borbonica borbonica (Réunion)
  • Antanartia borbonica mauritiana Manders, 1908 (Mauritius)
gollark: I mean, what do you expect to happen if you do something unsupported and which creates increasingly large problems each time you do it?
gollark: <@151391317740486657> Do you know what "unsupported" means? PotatOS is not designed to be used this way.
gollark: Specifically, 22 bytes for the private key and 21 for the public key on ccecc.py and 25 and 32 on the actual ingame one.
gollark: <@!206233133228490752> Sorry to bother you, but keypairs generated by `ccecc.py` and the ECC library in use in potatOS appear to have different-length private and public keys, which is a problem.EDIT: okay, apparently it's because I've been accidentally using a *different* ECC thing from SMT or something, and it has these parameters instead:```---- Elliptic Curve Arithmetic---- About the Curve Itself-- Field Size: 192 bits-- Field Modulus (p): 65533 * 2^176 + 3-- Equation: x^2 + y^2 = 1 + 108 * x^2 * y^2-- Parameters: Edwards Curve with c = 1, and d = 108-- Curve Order (n): 4 * 1569203598118192102418711808268118358122924911136798015831-- Cofactor (h): 4-- Generator Order (q): 1569203598118192102418711808268118358122924911136798015831---- About the Curve's Security-- Current best attack security: 94.822 bits (Pollard's Rho)-- Rho Security: log2(0.884 * sqrt(q)) = 94.822-- Transfer Security? Yes: p ~= q; k > 20-- Field Discriminant Security? Yes: t = 67602300638727286331433024168; s = 2^2; |D| = 5134296629560551493299993292204775496868940529592107064435 > 2^100-- Rigidity? A little, the parameters are somewhat small.-- XZ/YZ Ladder Security? No: Single coordinate ladders are insecure, so they can't be used.-- Small Subgroup Security? Yes: Secret keys are calculated modulo 4q.-- Invalid Curve Security? Yes: Any point to be multiplied is checked beforehand.-- Invalid Curve Twist Security? No: The curve is not protected against single coordinate ladder attacks, so don't use them.-- Completeness? Yes: The curve is an Edwards Curve with non-square d and square a, so the curve is complete.-- Indistinguishability? No: The curve does not support indistinguishability maps.```so I might just have to ship *two* versions to keep compatibility with old signatures.
gollark: > 2. precompilation to lua bytecode and compressionThis was considered, but the furthest I went was having some programs compressed on disk.

References

  1. Antanartia borbonica, Site of Markku Savela
  2. "Afrotropical Butterflies: Nymphalidae - Tribe Nymphalini". Archived from the original on 2014-08-08. Retrieved 2012-05-25.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.