Andrica's conjecture

Andrica's conjecture (named after Dorin Andrica) is a conjecture regarding the gaps between prime numbers.[1]

(a) The function for the first 100 primes.
(b) The function for the first 200 primes.
(c) The function for the first 500 primes.
Graphical proof for Andrica's conjecture for the first (a)100, (b)200 and (c)500 prime numbers. The function is always less than 1.

The conjecture states that the inequality

holds for all , where is the nth prime number. If denotes the nth prime gap, then Andrica's conjecture can also be rewritten as

Empirical evidence

Imran Ghory has used data on the largest prime gaps to confirm the conjecture for up to 1.3002 × 1016.[2] Using a table of maximal gaps and the above gap inequality, the confirmation value can be extended exhaustively to 4 × 1018.

The discrete function is plotted in the figures opposite. The high-water marks for occur for n = 1, 2, and 4, with A4 ≈ 0.670873..., with no larger value among the first 105 primes. Since the Andrica function decreases asymptotically as n increases, a prime gap of ever increasing size is needed to make the difference large as n becomes large. It therefore seems highly likely the conjecture is true, although this has not yet been proven.

Generalizations

As a generalization of Andrica's conjecture, the following equation has been considered:

where is the nth prime and x can be any positive number.

The largest possible solution x is easily seen to occur for , when xmax = 1. The smallest solution x is conjectured to be xmin  0.567148... (sequence A038458 in the OEIS) which occurs for n = 30.

This conjecture has also been stated as an inequality, the generalized Andrica conjecture:

for
gollark: 623361064250639049750086562710953591946589751413103482276930624743536325691607815478181152843667957061108615331504452127473924544945423682886061340841486377670096120715124914043027253860764823634143346235189757664521641376796903149501910857598442391986291642193994907236234646844117394032659184044378051333894525742399508296591228508555821572503107125701266830240292952522011872676756220415420516184163484756516999811614101002996078386909291603028840026910414079288621507842451670908700069928212066041837180653556725253256753286129104248776182582976515795984703562226293486003415872298053498965022629174878820273420922224533985626476691490556284250391275771028402799806636582548892648802545661017296702664076559042909945681506526530537182941270336931378517860904070866711496558343434769338578171138645587367812301458768712660348913909562009939361031029161615288138437909904231747336394804575931493140529763475748119356709110137751721008031559024853090669203767192203322909433467685142214477379393751703443661991040337511173547191855046449
gollark: 36534940603402166544375589004563288225054525564056448246515187547119621844396582533754388569094113031509526179378002974120766514793942590298969594699556576121865619673378623625612521632086286922210327488921865436480229678070576561514463204692790682120738837781423356282360896320806822246801224826117718589638140918390367367222088832151375560037279839400415297002878307667094447456013455641725437090697939612257142989467154357846878861444581231459357198492252847160504922124247014121478057345510500801908699603302763478708108175450119307141223390866393833952942578690507643100638351983438934159613185434754649556978103829309716465143840700707360411237359984345225161050702705623526601276484830840761183013052793205427462865403603674532865105706587488225698157936789766974220575059683440869735020141020672358502007245225632651341055924019027421624843914035998953539459094407046912091409387001264560016237428802109276457931065792295524988727584610126483699989225695968815920560010165525637567856672279661988578279484885583439751874
gollark: 656178622736371697577418302398600659148161640494496501173213138957470620884748023653710311508984279927544268532779743113951435741722197597993596852522857452637962896126915723579866205734083757668738842664059909935050008133754324546359675048442352848747014435454195762584735642161981340734685411176688311865448937769795665172796623267148103386439137518659467300244345005449953997423723287124948347060440634716063258306498297955101095418362350303094530973358344628394763047756450150085075789495489313939448992161255255977014368589435858775263796255970816776438001254365023714127834679261019955852247172201777237004178084194239487254068015560359983905489857235467456423905858502167190313952629445543913166313453089390620467843877850542393905247313620129476918749751910114723152893267725339181466073000890277689631148109022097245207591672970078505807171863810549679731001678708506942070922329080703832634534520380278609905569001341371823683709919495164896007550493412678764367463849020639640197666855923356546391383631857456981471962108410809618846054560390384553437291414465134749407848844237721751543342603066988317683310011331086904219390310801437843341513709243530136776310849135161564226984750743032971674696406665315270353254671126675224605511995818319637637076179919192035795820075956053
gollark: 819090949453314421828766181031007354770549815968077200947469613436092861484941785017180779306810854690009445899527942439813921350558642219648349151263901280383200109773868066287792397180146134324457264009737425700735921003154150893679300816998053652027600727749674584002836240534603726341655425902760183484030681138185510597970566400750942608788573579603732451414678670368809880609716425849759513806930944940151542222194329130217391253835591503100333032511174915696917450271494331515588540392216409722910112903552181576282328318234254832611191280092825256190205263016391147724733148573910777587442538761174657867116941477642144111126358355387136101102326798775641024682403226483464176636980663785768134920453022408197278564719839630878154322116691224641591177673225326433568614618654522268126887268445968442416107854016768142080885028005414361314623082102594173756238994207571362751674573189189456283525704413354375857534269869947254703165661399199968262824727064133622217892390317608542894373393561889165125042440400895271983787386480584726895462438823437517885201439560057104811949884239060613695734231559079670346149143447886360410318235073650277859089757827273130504889
gollark: J

See also

References and notes

  1. Andrica, D. (1986). "Note on a conjecture in prime number theory". Studia Univ. Babes–Bolyai Math. 31 (4): 44–48. ISSN 0252-1938. Zbl 0623.10030.
  2. Prime Numbers: The Most Mysterious Figures in Math, John Wiley & Sons, Inc., 2005, p. 13.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.