Almost flat manifold

In mathematics, a smooth compact manifold M is called almost flat if for any there is a Riemannian metric on M such that and is -flat, i.e. for the sectional curvature of we have .

Given n, there is a positive number such that if an n-dimensional manifold admits an -flat metric with diameter then it is almost flat. On the other hand, one can fix the bound of sectional curvature and get the diameter going to zero, so the almost-flat manifold is a special case of a collapsing manifold, which is collapsing along all directions.

According to the Gromov–Ruh theorem, M is almost flat if and only if it is infranil. In particular, it is a finite factor of a nilmanifold, which is the total space of a principal torus bundle over a principal torus bundle over a torus.

Notes

    gollark: Add extra months then.
    gollark: ↓ andrew
    gollark: MAKE ONE.
    gollark: I do not. It is the WRONG date format.
    gollark: I think the updater only needs to hash the manifest to check for version changes now.

    References

    • Gromov, M. (1978), "Almost flat manifolds", Journal of Differential Geometry, 13 (2): 231–241, MR 0540942.
    • Ruh, Ernst A. (1982), "Almost flat manifolds", Journal of Differential Geometry, 17 (1): 1–14, MR 0658470.


    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.