Alexander duality

In mathematics, Alexander duality refers to a duality theory presaged by a result of 1915 by J. W. Alexander, and subsequently further developed, particularly by Pavel Alexandrov and Lev Pontryagin. It applies to the homology theory properties of the complement of a subspace X in Euclidean space, a sphere, or other manifold. It is generalized by Spanier–Whitehead duality.

Modern statement

Let be a compact, locally contractible subspace of the sphere of dimension n. Let be the complement of in . Then if stands for reduced homology or reduced cohomology, with coefficients in a given abelian group, there is an isomorphism

for all . Note that we can drop local contractibility as part of the hypothesis, if we use Čech cohomology, which is designed to deal with local pathologies.

Alexander's 1915 result

To go back to Alexander's original work, it is assumed that X is a simplicial complex.

Alexander had little of the modern apparatus, and his result was only for the Betti numbers, with coefficients taken modulo 2. What to expect comes from examples. For example the Clifford torus construction in the 3-sphere shows that the complement of a solid torus is another solid torus; which will be open if the other is closed, but this does not affect its homology. Each of the solid tori is from the homotopy point of view a circle. If we just write down the Betti numbers

1, 1, 0, 0

of the circle (up to , since we are in the 3-sphere), then reverse as

0, 0, 1, 1

and then shift one to the left to get

0, 1, 1, 0

there is a difficulty, since we are not getting what we started with. On the other hand the same procedure applied to the reduced Betti numbers, for which the initial Betti number is decremented by 1, starts with

0, 1, 0, 0

and gives

0, 0, 1, 0

whence

0, 1, 0, 0.

This does work out, predicting the complement's reduced Betti numbers.

The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers

1, 1, 0

of the circle, and therefore

0, 1, 1

by flipping over and

1, 1, 0

by shifting to the left. This gives back something different from what the Jordan theorem states, which is that there are two components, each contractible (Schoenflies theorem, to be accurate about what is used here). That is, the correct answer in honest Betti numbers is

2, 0, 0.

Once more, it is the reduced Betti numbers that work out. With those, we begin with

0, 1, 0

to finish with

1, 0, 0.

From these two examples, therefore, Alexander's formulation can be inferred: reduced Betti numbers are related in complements by

.
gollark: Please don't. Generally you do not actually *need* to check something every tick, CC has events for a reason.
gollark: But if it's running a specific hardcoded program off the disk, it would be more user-friendly to just... add that fallback program in place of the "recovery disk" code, maybe with a prompt.
gollark: I don't really understand the point of loading a program from the disk, when it's only going to run a specific hardcoded program, honestl.y
gollark: Well, post the code and whatever issue you have, then.
gollark: I mean, you could do that, but why?

References

  • Hatcher, Allen (2002). Algebraic Topology (PDF). Cambridge: Cambridge University Press. p. 254. ISBN 0-521-79540-0.
  • "Alexander duality", Encyclopedia of Mathematics, EMS Press, 2001 [1994]

Further reading

  • Miller, Ezra; Sturmfels, Bernd (2005). Combinatorial Commutative Algebra. Graduate Texts in Mathematics. 227. New York, NY: Springer-Verlag. Ch. 5 Alexander Duality. ISBN 0-387-22356-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.