Advanced superionic conductor

An advanced superionic conductor (AdSIC) is fast ion conductor that has a crystal structure close to optimal for fast ion transport (FIT).

History

The term was introduced in a paper by A.L. Despotuli, A.V. Andreeva and B. Rambaby.[1]

Characteristics

The rigid ion sublattice of AdSICs have structure channels where mobile ions of opposite sign migrate. Their ion-transport characteristics display ionic conductivity of ~0.3/Ω cm (RbAg4I5, 300 K) and activation energy of Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).

The Rubidium silver iodide–family is a group of AdSIC compounds and solid solutions that are isostructural with the RbAg4I5 alpha modification. Examples of such compounds with mobile Ag+- and Cu+-cations include KAg4I5, NH4Ag4I5, K1−xCsxAg4I5, Rb1−xCsxAg4I5, CsAg4Br1−xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2 and KCu4I5.[2][3][4][5][6][7]

RbAg4I5 AdSIC displays peculiar features of crystal structure and dynamics of mobile ions.[8][9]

Recently, all solid state micrometre-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics and related technologies (22 nm technological node of CMOS and beyond).[10]

gollark: ++radio_connect
gollark: μhahahaha, time to upload the entire osmarks.tk™ memeCLOUD™ directly into your brain via voice chat.
gollark: https://osmarks.tk/apioform/ I think.
gollark: Apioforms are obviously perfect and without flaw, 2020 actually has been quite bad, skeumorphism is bee, and people enjoy among us so bee you for trying to arbitrarily take that away.
gollark: This was due to improved apiolectromagnetic sensors.

References

  1. Despotuli, Andreeva and Rambaby (June 7, 2006). "Nanoionics of advanced superionic conductors". Ionics. 11 (3–4): 306–314. doi:10.1007/BF02430394.
  2. Geller, S. (1967-07-21). "Crystal Structure of the Solid Electrolyte, RbAg4I5". Science. 157 (3786): 310–312. doi:10.1126/science.157.3786.310. ISSN 0036-8075. PMID 17734228.
  3. Geller, S. (1979-01-01). "Crystal structure and conductivity of the solid electrolyte". Physical Review B. 19 (10): 5396–5402. doi:10.1103/PhysRevB.19.5396.
  4. Hull, S; Keen, D.A; Sivia, D.S; Berastegui, P (2002). "Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides". Journal of Solid State Chemistry. 165 (2): 363–371. doi:10.1006/jssc.2002.9552.
  5. Lichkova, N. V.; Despotuli, A. L.; Zagorodnev, V. N.; Minenkova, N. A.; Shakhlevich, K. V. (1989-01-01). "Ionic conductivity of solid electrolytes in two- and three-component glass forming systems AgX-CsX (X=Cl, Br, I)". Ehlektrokhimiya (in Russian). 25 (12): 1636–1640. ISSN 0424-8570.
  6. Studenyak, I. P.; Kranjčec, M.; Bilanchuk, V. V.; Kokhan, O. P; Orliukas, A. F.; Kezionis, A.; Kazakevicius, E.; Salkus, T. (2009-12-01). "Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor". Journal of Physics and Chemistry of Solids. 70 (12): 1478–1481. doi:10.1016/j.jpcs.2009.09.003.
  7. Despotuli, A.L.; Zagorodnev, V.N.; Lichkova, N.V.; Minenkova, N.A. (1989). "New high conductive CsAg4Br1−xI2+x (0.25 < x <1) solid electrolytes". Soviet Physics Solid State. 31: 242–244.
  8. Funke, Klaus; Banhatti, Radha D.; Wilmer, Dirk; Dinnebier, Robert; Fitch, Andrew; Jansen, Martin (2006-03-01). "Low-Temperature Phases of Rubidium Silver Iodide: Crystal Structures and Dynamics of the Mobile Silver Ions". The Journal of Physical Chemistry A. 110 (9): 3010–3016. doi:10.1021/jp054807v. ISSN 1089-5639. PMID 16509622.
  9. Chang, Jen-Hui; Zürn, Anke; von Schnering, Hans Georg (2008-10-01). "Hyperbolic Cation Diffusion Paths in α-RbAg4I5 Type Superionic Conductors". Zeitschrift für Anorganische und Allgemeine Chemie. 634 (12–13): 2156–2160. doi:10.1002/zaac.200800343. ISSN 1521-3749.
  10. Александр Деспотули, Александра Андреева (2007). Высокоёмкие конденсаторы для 0,5 вольтовой наноэлектроники будущего (PDF). Современная Электроника (in Russian) (7): 24–29. Retrieved 2007-11-02. Alexander Despotuli, Alexandra Andreeva (2007). "High-capacity capacitors for 0.5 voltage nanoelectronics of the future" (PDF). Modern Electronics (7): 24–29. Retrieved 2007-11-02.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.