Adolphe Buhl

Adolphe Buhl (19 June 1878, in Paris – 24 March 1949, in Viry-Châtillon, Seine-et-Oise) was a French mathematician and astronomer.[1][2]

Biography

At the age of 14, he was paralyzed, immobilizing him for a few years and forcing him to walk on crutches all his life. He became interested in mathematics and reached a high level of expertise as a self-taught mathematician. He obtained a PhD in 1901 at the Faculty of Sciences of the University of Paris with thesis Sur les équations différentielles simultanées et la forme aux dérivées partielles adjointe and with second thesis La théorie de Delaunay sur le mouvement de la lune. The thesis committee was composed of Gaston Darboux, Henri Poincaré and Paul Appell.[1]

Adolphe Buhl began his teaching career in 1903 as a maître de conférences (senior lecturer) in astronomy at the Faculty of Sciences of the University of Montpellier. In 1909, he was appointed professor at the Faculty of Sciences of the University of Toulouse, first in the professorial chair of rational mechanics then in the chair of differential and integral calculus, which he occupied until his retirement in October 1945.[1]

From 1903, he was an editor for the Swiss journal L'Enseignement Mathématique; in 1920 he succeeded Charles-Ange Laisant and participated with Henri Fehr as co-editors-in-chief of the journal. From 1930, he participated as editorial committee secretary to the editor-in-chief of the Annales de la Faculté des sciences de Toulouse.[1]

Adolphe Buhl published numerous articles in mathematical analysis, geometry, and theoretical physics.[3] His lectures given at the Faculty of Sciences of Toulouse were published.

He was an Invited Speaker of the ICM in 1928 in Bologna.[4] He was awarded the Ordre national de la Légion d'honneur.

Selected publications

Articles

Books

  • Sur les équations différentielles simultanées et la forme aux dérivées partielles adjointe. C. Naud. 1901.
  • Géométrie et analyse des intégrales doubles. Gauthier-Villars. 1920.
  • Séries Analytiques. Sommabilité. Gauthier-Villars. 1925.
  • Formules stokiennes. Gauthier-Villars. 1926.
  • Aperçus modernes sur la théorie des groupes continus et finis. Gauthier-Villars. 1928.
  • Gravifiques, groupes, mécaniques. Gauthier-Villars. 1934.
  • Nouveaux Éléments d'Analyse. Calcul Infinitésimal. Géométrie. Physique Théorique, tome 1: Variables réelles. Gauthier-Villars. 1937. tome 2: Variables complexes. 1938.[5] tome 3: Équations différentielles. 1940. tome 4: Équations aux dérivées partielles. 1943.
gollark: * proportion
gollark: I don't think home lighting is a substantial amount of total energy consumption.
gollark: That's actually quite a lot with 400W bulbs.
gollark: That seems like pointlessly wasting electricity, unless you need the heat too.
gollark: Everyone knows the best lighting is obtained via constantly running electric arcs.

References

  1. Viguier, Gabriel (1950). "Nécrologie. Adolphe Buhl" (PDF). Bulletin de la Société des mathématiciens et des physiciens de la R. P. De Macédoine, tome 1.
  2. "Buhl, Adolphe". Éditions Jacques Gabay.
  3. "Buhl, Adolphe". zbMATH.
  4. Buhl, A. "Sur la permutabilité des opérateurs différentiels." In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pp. 277–282. 1929.
  5. Trjitzinsky, W. J. (1939). "Review of Nouveaux Éléments d'Analyse. Calcul Infinitésimal. Géométrie. Physique Théorique. Vol. 2: Variables Complexes by A. Buhl". Bull. Amer. Math. Soc. 45: 60–61. doi:10.1090/S0002-9904-1939-06923-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.