Adjoint bundle

In mathematics, an adjoint bundle [1][2] is a vector bundle naturally associated to any principal bundle. The fibers of the adjoint bundle carry a Lie algebra structure making the adjoint bundle into a (nonassociative) algebra bundle. Adjoint bundles have important applications in the theory of connections as well as in gauge theory.

Formal definition

Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let

be the adjoint representation of G. The adjoint bundle of P is the associated bundle

The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs [p, x] for pP and x such that

for all gG. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.

Example [3]

Let G be any Lie group with a closed sub group H and let L be the Lie algebra of G. Since G is a topological transformation group of L by the adjoint action of G,that is , for every , and ~ , we have ,

  defined  by  

where is the adjoint representation of G , is a homomorphism of G into A which is an automorphism group of G and is the mapping of G into itself. H is a topological transformation group of L and obviously for every u in H, is a Lie algebra automorphism.

since H is a closed subgroup of a Lie group G, there is a locally trivial principal bundle over X=G/H having H as a structure group. So the existence of coordinate functions is assured where is an open covering for X. Then by the existence theorem there exists a Lie bundle with the continuous mapping inducing on each fibre the Lie bracket.

Properties

Differential forms on M with values in are in one-to-one correspondence with horizontal, G-equivariant Lie algebra-valued forms on P. A prime example is the curvature of any connection on P which may be regarded as a 2-form on M with values in .

The space of sections of the adjoint bundle is naturally an (infinite-dimensional) Lie algebra. It may be regarded as the Lie algebra of the infinite-dimensional Lie group of gauge transformations of P which can be thought of as sections of the bundle P ×Ψ G where Ψ is the action of G on itself by conjugation.

If is the frame bundle of a vector bundle , then has fibre the general linear group (either real or complex, depending on ) where . This structure group has Lie algebra consisting of all matrices , and these can be thought of as the endomorphisms of the vector bundle . Indeed there is a natural isomorphism .

Notes

  1. J. Janyška (2006). "Higher order Utiyama-like theorem". Reports on Mathematical Physics. 58: 93–118. Bibcode:2006RpMP...58...93J. doi:10.1016/s0034-4877(06)80042-x. [cf. page 96]
  2. Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry (PDF), Springer-Verlag, archived from the original (PDF) on 2017-03-30, retrieved 2011-06-14 page 161 and page 400
  3. B.S. Kiranagi,,Lie algebra bundles and Lie rings, Proc. Natl. Acad. Sci. India 54(a),1984,38-44.
gollark: Or they can represent them but not the metadata needed to deserialize them properly to the original type.
gollark: Or datetimes.
gollark: Also because some encodings might not be able to represent e.g. arbitrary bytestringoids.
gollark: This law is wrong. Not ALL things can be utterly (de)serialised accurately to all formats.
gollark: if it isn't, it might close if you just close the terminal.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.